Lessons from the NLBSE 2024 Competition: Towards Building Efficient Models for GitHub Issue Classification

This paper presents the findings of our team's efforts during the "NLBSE 2024" competition, which centered on the multi-class classification of GitHub Issues. The challenge required models with strong few-shot learning capabilities to distinguish between 300 issues from five different...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE/ACM International Workshop on Natural Language-Based Software Engineering (NLBSE) s. 45 - 48
Hlavní autoři: Gomez-Barrera, Daniel Fernando, Becerra, Luccas Rojas, Roncancio, Juan Pinzon, Almanza, David Ortiz, Arboleda, Juan, Linares-Vasquez, Mario, Manrique, Ruben Francisco
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 20.04.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents the findings of our team's efforts during the "NLBSE 2024" competition, which centered on the multi-class classification of GitHub Issues. The challenge required models with strong few-shot learning capabilities to distinguish between 300 issues from five different repositories. Our primary strategy involved improving embeddings by developing the Classification Few Fit Sentence Transformer (CFFitST), a strategy that fine-tunes embeddings from a base sentence transformer to suit the dataset. We also explored various hypotheses concerning the optimal combination of information input and classification models. As a result, we managed to achieve an average improvement of 2.44 \% over the SetFit baseline.
AbstractList This paper presents the findings of our team's efforts during the "NLBSE 2024" competition, which centered on the multi-class classification of GitHub Issues. The challenge required models with strong few-shot learning capabilities to distinguish between 300 issues from five different repositories. Our primary strategy involved improving embeddings by developing the Classification Few Fit Sentence Transformer (CFFitST), a strategy that fine-tunes embeddings from a base sentence transformer to suit the dataset. We also explored various hypotheses concerning the optimal combination of information input and classification models. As a result, we managed to achieve an average improvement of 2.44 \% over the SetFit baseline.
Author Linares-Vasquez, Mario
Becerra, Luccas Rojas
Roncancio, Juan Pinzon
Gomez-Barrera, Daniel Fernando
Almanza, David Ortiz
Arboleda, Juan
Manrique, Ruben Francisco
Author_xml – sequence: 1
  givenname: Daniel Fernando
  surname: Gomez-Barrera
  fullname: Gomez-Barrera, Daniel Fernando
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 2
  givenname: Luccas Rojas
  surname: Becerra
  fullname: Becerra, Luccas Rojas
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 3
  givenname: Juan Pinzon
  surname: Roncancio
  fullname: Roncancio, Juan Pinzon
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 4
  givenname: David Ortiz
  surname: Almanza
  fullname: Almanza, David Ortiz
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 5
  givenname: Juan
  surname: Arboleda
  fullname: Arboleda, Juan
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 6
  givenname: Mario
  surname: Linares-Vasquez
  fullname: Linares-Vasquez, Mario
  organization: Universidad de los Andes,Bogotá,Colombia
– sequence: 7
  givenname: Ruben Francisco
  surname: Manrique
  fullname: Manrique, Ruben Francisco
  organization: Universidad de los Andes,Bogotá,Colombia
BookMark eNotjbFOwzAUAI0EElA6szD4BwrP8XPssNGotJUCDJS5sutnMErjKk6F-HuCYLrldHfJTrvUEWPXAm6FQHUnS5Ta6NuRBhBO2LTSlUEADUqXxTmb5hwdqBIrUZXVBftsKOfUZR76tOfDB_HnZv664AUUyOu0P9AQh5i6e75JX7b3mc-PsfWxe-eLEOIuUjfwp-SpHROp58s4rI6Or3M-Eq9bO-5Gy_4mrthZsG2m6T8n7O1xsalXs-Zlua4fmpkt0AwzJAfkvSqkMwqtQyAMlYXCWetK44N0cmdwFKwDQz44DSIQ0k4apwDkhN38dSMRbQ993Nv-eyugRC2kkj-fOVjI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3643787.3648040
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705762
EndPage 48
ExternalDocumentID 10647135
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a248t-4eb0edd523b854ab40e4f9a02baab68df3b3c84d52ab08edfb701fe4ec38b5003
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313494100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:03:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-4eb0edd523b854ab40e4f9a02baab68df3b3c84d52ab08edfb701fe4ec38b5003
PageCount 4
ParticipantIDs ieee_primary_10647135
PublicationCentury 2000
PublicationDate 2024-April-20
PublicationDateYYYYMMDD 2024-04-20
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 IEEE/ACM International Workshop on Natural Language-Based Software Engineering (NLBSE)
PublicationTitleAbbrev NLBSE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib056491969
Score 1.8882654
Snippet This paper presents the findings of our team's efforts during the "NLBSE 2024" competition, which centered on the multi-class classification of GitHub Issues....
SourceID ieee
SourceType Publisher
StartPage 45
SubjectTerms Buildings
Computer architecture
Conferences
Data models
Embedding
Few-shot learning
GitHub Issue Classification
Measurement
NLBSE 2024 Competition
Task analysis
Transformers
Title Lessons from the NLBSE 2024 Competition: Towards Building Efficient Models for GitHub Issue Classification
URI https://ieeexplore.ieee.org/document/10647135
WOSCitedRecordID wos001313494100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8eBJxYpv5uA1dZPdZDceW1p7KKVghd7KPiZQkVba1N_v7DY-Lh48JYSQhXlkdnbmm4-x-5yjVKIqE5uZKpEqd4n2BTmezbRLhSS7iiPzx2oy0fN5OW3A6hELg4ix-Qy74TbW8v3a7cJRGXl4IQOlXIu1lCr2YK0v48kLWYZRL834nlTmDyIUpbTq0lXzcLrxiz8lho_h8T8XPmGdHyAeTL9DzCk7wNUZex3T34mMBQI0BGgDB5Nx73kAGQVC6Md9cOzDeoRZ7IndQq_hvoZBHBhBa0HgQHujT6w38LSsRzsLkYcPIklmaB-KGuuwl-Fg1h8lDWVCYjKp60Si5eg9ZZdW59JYSaqoSsMza4wttK-EFU5LesFYrtFXVvG0QolOaJuTh5-z9mq9wgsGxqExxllXeiSVeYtCO6R0kjKMNOPqknWCoBbv-6kYiy8ZXf3x_JodBTmESkzGb1i73uzwlh26j3q53dxFXX4C_pOhbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CnpSseLbPXhN3Ww2ycZjS2vFGApW6K3sYwIVSaVN_f3OblP14sFTQghZmEdmZ2e--Qi5jRmINCqzQHNVBiKNTSBtgo6nuTRhJNCu_Mj8PC0KOZlkowas7rEwAOCbz6Djbn0t387Nyh2VoYcnwlHKbZOdWAjO1nCtjfnEicjcsJdmgE8o4rvIlaVk2sGrZO584xeDig8gg4N_Ln1I2j9QPDr6DjJHZAuqY_KW4_8JzYU6cAjFLRwt8u5Ln3IMhbTnd8K-E-uejn1X7JJ2G_Zr2vcjI3At6ljQ3vET8wV9mNXDlaaeiY96mkzXQOR11iavg_64Nwwa0oRAcSHrQIBmYC3ml1rGQmmByigzxbhWSifSlpGOjBT4gtJMgi11ysISBJhI6hh9_IS0qnkFp4QqA0opo01mAZVmNUTSACaUmGOEnKVnpO0ENf1Yz8WYbmR0_sfzG7I3HD_n0_yxeLog-04mri7D2SVp1YsVXJFd81nPlotrr9cvkKyksw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+International+Workshop+on+Natural+Language-Based+Software+Engineering+%28NLBSE%29&rft.atitle=Lessons+from+the+NLBSE+2024+Competition%3A+Towards+Building+Efficient+Models+for+GitHub+Issue+Classification&rft.au=Gomez-Barrera%2C+Daniel+Fernando&rft.au=Becerra%2C+Luccas+Rojas&rft.au=Roncancio%2C+Juan+Pinzon&rft.au=Almanza%2C+David+Ortiz&rft.date=2024-04-20&rft.pub=ACM&rft.spage=45&rft.epage=48&rft_id=info:doi/10.1145%2F3643787.3648040&rft.externalDocID=10647135