ASPPLN: Accelerated Symbolic Probability Propagation in Logic Network

Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary outputs. It has many applications such as power estimation, reliability analysis, and error analysis for approximate circuits. Existing methods fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) S. 1 - 9
Hauptverfasser: Xiao, Weihua, Qian, Weikang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 29.10.2022
Schlagworte:
ISSN:1558-2434
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary outputs. It has many applications such as power estimation, reliability analysis, and error analysis for approximate circuits. Existing methods for the task can be divided into two categories: simulation-based and probability-based methods. However, most of them suffer from low accuracy or bad scalability. In this work, we propose ASPPLN, a method for accelerated symbolic probability propagation in logic network, which has a linear complexity with the network size. We first introduce a new definition in a graph called redundant input and take advantage of it to simplify the propagation process without losing accuracy. Then, a technique called symbol limitation is proposed to limit the complexity of each node's propagation according to the partial probability significances of the symbols. The experimental results showed that compared to the existing methods, ASPPLN improves the estimation accuracy of switching activity by up to 24.70%, while it also has a speedup of up to 29×.
AbstractList Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary outputs. It has many applications such as power estimation, reliability analysis, and error analysis for approximate circuits. Existing methods for the task can be divided into two categories: simulation-based and probability-based methods. However, most of them suffer from low accuracy or bad scalability. In this work, we propose ASPPLN, a method for accelerated symbolic probability propagation in logic network, which has a linear complexity with the network size. We first introduce a new definition in a graph called redundant input and take advantage of it to simplify the propagation process without losing accuracy. Then, a technique called symbol limitation is proposed to limit the complexity of each node's propagation according to the partial probability significances of the symbols. The experimental results showed that compared to the existing methods, ASPPLN improves the estimation accuracy of switching activity by up to 24.70%, while it also has a speedup of up to 29×.
Author Xiao, Weihua
Qian, Weikang
Author_xml – sequence: 1
  givenname: Weihua
  surname: Xiao
  fullname: Xiao, Weihua
  email: 019370910014@sjtu.edu.cn
  organization: University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,China
– sequence: 2
  givenname: Weikang
  surname: Qian
  fullname: Qian, Weikang
  email: qianwk@sjtu.edu.cn
  organization: University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,China
BookMark eNotjM1Kw0AURkdRsNas3bjIC6Te-Z9xV0qrQqiB6rrcZGbKaJopSUDy9lZ09R04h--WXHWp84TcU1hQKuQjl2C4ZAsuhRVSXZDManMWwC2jWlySGZXSFExwcUOyYfgEAGY01RpmZL3cVVW5fcqXTeNb3-PoXb6bjnVqY5NXfaqxjm0cp18-4QHHmLo8dnmZDudg68fv1H_dkeuA7eCz_52Tj836ffVSlG_Pr6tlWSATZixELYJXzjF0oJ22Doy0gQeD3EpgklH0IegG0QXWgAhKSKRIGTcelFJ8Th7-fqP3fn_q4xH7aU8BlFXM8B9GI0zR
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549456
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069628
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-4b4fe6dd2ad07d79d0859f3f8a39502521aeff7caadf2c04f645a1a1238e06663
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981574300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-4b4fe6dd2ad07d79d0859f3f8a39502521aeff7caadf2c04f645a1a1238e06663
PageCount 9
ParticipantIDs ieee_primary_10069628
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.2067788
Snippet Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms complexity
dominator
logic network
symbolic probability propagation
Title ASPPLN: Accelerated Symbolic Probability Propagation in Logic Network
URI https://ieeexplore.ieee.org/document/10069628
WOSCitedRecordID wos000981574300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62eNCLW8WdHLxOneyJtyItHsowUIXeSiYL9OBUalvovzfJjLUXD95CIJC8l7wlyfc9AB49Z5oz5jJimMpoxfJMS04zRLQwwVIapBPP7FgUhZxOVdmC1RMWxjmXPp-5fmymt3y7MOt4VRZOeM4Vx7IDOkLwBqy1u1CJob-Im6_NtkIHb7l8EGVPhKVgo09CQkRjueq9YirJl4xO_jmLU9D7ReXBcudvzsCBq8_B8R6h4AUYDiZlOS6e4cCY4E8iDYSFk-1HFdl_4-CqoeXexnYwJUktcF7DWHLZwKL5E94D76Ph28tr1hZKyDSmchVETL3j1mJtc2GFspG1zBMvNVEsBDUYaee9MFpbj01OPadMIx1UIV3MX8gl6NaL2l0BaJH2lQxRkXCSOk-roDEVFhbE6Sm16Br0okRmnw0XxuxHGDd_9N-CIxwBA8HaY3UHuqvl2t2DQ7NZzb-WD0mD39LmmtE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSLXxO_zcFrZ5smaeptyMbEWgqbsNtI8wE72MnchP33Jmmdu3jwFgKB5L3kfST5_R7AvWFUMEp1EEuaBqSkYSA4I0EUi0RaSykj4XlmsyTP-XicFg1Y3WNhtNb-85nuuKZ_y1czuXRXZfaEhyxlmG_DDiUEhzVca32l4oL_xG2_Jt-yHaxh84kIfYipDzc6sU2JiCtYvVFOxXuT_uE_53EE7V9cHirWHucYtnR1AgcblIKn0OsOiyLLH1FXSutRHBGEQsPVe-n4f93gsibmXrm2NSZeMWhaIVd0WaK8_hXehrd-b_Q0CJpSCYHAhC-skInRTCksVJioJFWOt8zEhos4pTaswZHQxiRSCGWwDIlhhIpIWGVw7TKY-Axa1azS54BUJEzJbVyUaE60IaXVWWoXZsVpCFHRBbSdRCYfNRvG5EcYl3_038HeYPSaTbLn_OUK9rGDD1jbj9NraC3mS30Du_JrMf2c33ptfgMSS54Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=ASPPLN%3A+Accelerated+Symbolic+Probability+Propagation+in+Logic+Network&rft.au=Xiao%2C+Weihua&rft.au=Qian%2C+Weikang&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549456&rft.externalDocID=10069628