Modern Machining Technology - Advanced, Hybrid, Micro Machining and Super Finishing Technology

This book explores complex and precise components with challenging shapes that are increasing in demand in industry. As the first book to cover all major technologies in this field, readers will find the latest technical developments and research in one place, allowing for easy comparison of specifi...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhattacharyya, Bijoy, Doloi, Biswanath
Format: eBook Book
Language:English
Published: London Elsevier 2020
Academic Press
Elsevier Science & Technology
Edition:1
Subjects:
ISBN:0128128941, 9780128128947
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Title Page Preface Table of Contents 1. Need of Advanced Machining Technology 2. Classification of Advanced Machining Technology 3. Machining Processes Utilizing Mechanical Energy 4. Machining Processes Utilizing Thermal Energy 5. Machining Processes Utilizing Chemical and Electrochemical Energy 6. Hybrid Machining Technology 7. Micromachining Processes 8. Advanced Finishing Processes Index
  • Front Cover -- Modern Machining Technology -- Copyright -- Contents -- Acknowledgment -- Chapter One: Need of advanced machining technology -- Contents -- 1.1. Chronological development of machining -- 1.2. Utility of advanced machining technology -- References -- Chapter Two: Classification of advanced machining technology -- Contents -- 2.1. Introduction -- 2.2. Classifications of modern machining processes -- 2.3. Selection of modern machining processes -- References -- Chapter Three: Machining processes utilizing mechanical energy -- Contents -- 3.1.1. Introduction -- 3.1.1.1. Fundamentals of ultrasonic machining -- 3.1.1.2. Need of ultrasonic machining -- 3.1.2. Mechanism of material removal in USM -- 3.1.2.1. Material removal mechanism in stationary USM -- 3.1.2.2. Material removal mechanism in rotary USM -- 3.1.3. Details of stationary ultrasonic machining system -- 3.1.3.1. Tool vibration unit -- 3.1.3.2. Workpiece holding unit -- 3.1.3.3. Abrasive slurry supply unit -- 3.1.3.4. Tool feeding and control unit -- 3.1.3.5. Power supply unit -- 3.1.3.6. Specification of ultrasonic machining setup -- 3.1.4. Details of rotary ultrasonic machining system -- 3.1.4.1. Tool vibration unit -- 3.1.4.2. Data acquisition unit -- 3.1.4.3. Coolant supply unit -- 3.1.5. Influences of process parameters on performance criteria of stationary ultrasonic machining -- 3.1.5.1. Influences of process parameters on material removal rate -- 3.1.5.2. Influences of process parameters on overcut criteria -- 3.1.5.3. Influences of process parameters on circularity error -- 3.1.6. Influences of process parameters on performance criteria of rotary ultrasonic machining -- 3.1.6.1. Influences of process parameters on material removal rate -- 3.1.6.2. Influences of process parameters on surface roughness -- 3.1.6.3. Influences of process parameters on cutting force
  • 4.4.7. Applications of electron beam machining processes
  • 4.2.5. Applications of plasma arc machining process -- 4.2.6. Advancement in PAM technology -- References -- 4.3.1. Introduction -- 4.3.1.1. Types of lasers in machining applications -- 4.3.2. Fundamental of laser generation -- 4.3.2.1. Fundamentals of Nd: YAG laser generation -- 4.3.2.2. Fundamentals of fiber laser generation -- 4.3.2.3. Fundamentals of CO2 laser generation -- 4.3.2.4. Fundamentals of excimer laser generation -- 4.3.2.5. Fundamentals of diode laser generation -- 4.3.3. Material removal mechanism in laser beam machining -- 4.3.4. Laser beam machining systems details -- 4.3.4.1. Laser generation and beam delivery unit -- 4.3.4.2. Cooling unit -- 4.3.4.3. Assist gas supply unit -- 4.3.4.4. CNC controller for X-Y-Z axes movement -- 4.3.5. Process parametric studies on performance criteria of LBM -- 4.3.5.1. Laser drilling -- 4.3.5.2. Laser cutting -- 4.3.5.3. Laser grooving -- 4.3.5.4. Laser turning -- 4.3.5.5. Laser marking -- 4.3.6. Advantages and limitations of laser beam machining processes -- 4.3.7. Applications of laser beam machining processes -- 4.3.8. Advancements of laser beam machining technology -- References -- 4.4.1. Introduction -- 4.4.1.1. Fundamental of electron beam generation -- 4.4.1.2. Material removal mechanism in electron beam machining -- 4.4.2. Electron beam machining system setup -- 4.4.3. Theoretical consideration for EBM -- 4.4.3.1. Current density -- 4.4.3.2. Effects of aberrations on maximum current density -- 4.4.3.3. Material removal -- 4.4.4. Influence of process parameters on performance criteria of EBM processes -- 4.4.4.1. Process parameters -- 4.4.4.2. Process capabilities related to various performance criteria -- 4.4.5. Advantages and limitations of electron beam machining processes -- 4.4.5.1. Advantages -- 4.4.5.2. Limitations -- 4.4.6. Concise summary of EBM characteristics
  • 3.1.7. Advantages and limitations of ultrasonic machining -- 3.1.7.1. Stationary ultrasonic machining -- 3.1.7.2. Rotary ultrasonic machining -- 3.1.8. Applications of ultrasonic machining -- 3.1.8.1. Stationary ultrasonic machining -- 3.1.8.2. Rotary ultrasonic machining -- 3.1.9. Advancement in ultrasonic machining technology -- References -- 3.2.1. Introduction -- 3.2.1.1. Fundamentals of abrasive jet machining -- 3.2.1.2. Mechanism of material removal in AJM -- 3.2.1.2.1. Modeling of material removal in AJM -- 3.2.2. Details of AJM machining system -- 3.2.2.1. Gas propulsion system -- 3.2.2.2. Abrasive feeder and mixing chamber -- 3.2.2.3. Machining chamber -- 3.2.2.4. Nozzle -- 3.2.2.5. Abrasives -- 3.2.3. Influence of process parameters on performance criteria of AJM process -- 3.2.3.1. Effect of abrasive flow rate and grain size and mixing ratio on MRR -- 3.2.3.2. Effect of nozzle pressure on MRR -- 3.2.3.3. Effect of stand-off distance on width of cut and MRR in AJM -- 3.2.4. Advantages and limitations of abrasive jet machining processes -- 3.2.5. Applications of abrasive jet machining processes -- 3.2.6. Advancement in AJM technology -- References -- 3.3.1. Introduction -- 3.3.1.1. Mechanisms of material removal -- 3.3.2. Details of water jet machining system -- 3.3.3. Effect of process parameters on machining criteria of WJM -- 3.3.4. Advantages and limitations of water jet machining -- 3.3.4.1. Advantages -- 3.3.4.2. Limitations -- 3.3.5. Applications of water jet machining -- 3.3.6. Advancement in water jet machining technology -- References -- 3.4.1. Introduction -- 3.4.1.1. Basic functions of ion beam processing -- 3.4.1.2. Material removal mechanism in ion beam machining -- 3.4.1.2.1. Mathematical formulation on mechanism of ion beam machining -- 3.4.1.3. Types of ion beam machining processes
  • 3.4.2. Focused ion beam (FIB) machining system setup -- 3.4.2.1. Liquid metal ion sources (LMIS) -- 3.4.2.2. Machining system setup -- 3.4.2.3. Gas cluster ion beam (GCIB) -- 3.4.2.4. GSIB processing setup -- 3.4.3. Focused ion beam milling -- 3.4.4. Influence of process parameters on performance criteria of IBM process -- 3.4.4.1. Beam parameters -- 3.4.4.2. Operation parameters -- 3.4.4.3. Scan strategy -- 3.4.4.4. FIB simulation software -- 3.4.5. Advantages and limitations of ion beam machining process -- 3.4.6. Applications of ion beam machining process -- 3.4.7. Advancement in IBM -- 3.5 Model Questions -- Ultrasonic machining (USM) -- Abrasive jet machining (AJM) -- Water jet machining (WJM) -- Ion beam machining (IBM) -- References -- Further reading -- Chapter Four: Machining processes utilizing thermal energy -- Contents -- 4. Introduction -- 4.1.1. Introduction -- 4.1.2. Mechanism of material removal -- 4.1.2.1. Energy distribution -- 4.1.3. EDM equipment -- 4.1.3.1. EDM power supply -- 4.1.3.2. Control system for EDM process -- 4.1.3.2.1. Gap control by servo feed mechanism -- 4.1.3.3. Dielectric system -- 4.1.3.3.1. Types of dielectrics -- 4.1.3.3.2. Flushing of dielectric -- 4.1.3.4. Tool electrode -- 4.1.3.4.1. Tool electrode materials -- 4.1.3.4.2. Tool wear -- 4.1.3.4.3. Fabrication and design aspects -- 4.1.4. Modeling of EDM processes -- 4.1.4.1. Material removal at single discharge in EDM -- 4.1.4.2. Estimation of material removal and surface finish for RC circuit -- 4.1.4.3. Surface finish -- 4.1.4.4. Material removal for pulse generator circuit -- 4.1.4.5. Generalized approaches for EDM modeling -- 4.1.5. Influence of EDM parameters on machining characteristics -- 4.1.5.1. Influence of polarity -- 4.1.6. Machining accuracy and surface integrity -- 4.1.6.1. Taper -- 4.1.6.2. Overcut -- 4.1.6.3. Surface integrity
  • 4.1.7. Wire Electro Discharge Machining (WEDM) -- 4.1.7.1. Basic principle -- 4.1.7.1.1. Features of WEDM -- 4.1.7.2. Major components of WEDM systems -- 4.1.7.3. Influence of WEDM process parameters -- 4.1.7.4. Mathematical modeling for material removal rate (MRR) in WEDM -- 4.1.7.5. Taper cutting system in WEDM -- 4.1.7.6. Forces acting on the wire -- 4.1.7.7. Finishing and accuracy -- 4.1.7.7.1. Trim cutting features in WEDM -- 4.1.7.8. Coated wire electrode -- 4.1.7.9. Wire path strategy -- 4.1.7.9.1. Wire tool vibration -- Methods for minimizing wire vibration -- 4.1.7.10. Wire-lag phenomenon during machining -- 4.1.7.10.1. Mathematical modeling of wire lag in WEDM -- 4.1.7.11. Advancement in WEDM -- 4.1.7.12. Applications of wire-cut EDM -- 4.1.8. Electro discharge grinding -- 4.1.8.1. Process mechanism -- 4.1.8.2. Setup detail -- 4.1.8.3. Types of EDG -- 4.1.8.4. Influence of process parameters -- 4.1.9. Advantages and limitations of various EDM processes -- 4.1.9.1. Advantages -- 4.1.9.2. Limitations -- 4.1.10. Environmental impacts of EDM -- 4.1.10.1. Protective measures -- 4.1.11. Applications of EDM -- 4.1.12. Advancement in EDM -- 4.1.12.1. Advance power supply and control system -- 4.1.12.2. Tool design and fabrication -- 4.1.12.3. Dry EDM -- 4.1.12.4. Alloying and coating with EDM -- 4.1.12.5. Machining of nonconducting materials -- References -- Further reading -- 4.2.1. Introduction -- 4.2.1.1. Mechanism of material removal and machining rate in PAM -- 4.2.1.2. Types of plasma arc machining system -- 4.2.2. Details of plasma arc machining system setup -- 4.2.2.1. Power supply unit -- 4.2.2.2. Plasma gas supply unit -- 4.2.2.3. Shielding gas supply unit -- 4.2.2.4. Plasma torch -- 4.2.3. Influence of process parameters on performance criteria of PAM process -- 4.2.4. Advantages and limitations of plasma arc machining process