PRIMAL: Power Inference using Machine Learning

This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 56th Annual Design Automation Conference 2019 pp. 1 - 6
Main Authors: Zhou, Yuan, Ren, Haoxing, Zhang, Yanqing, Keller, Ben, Khailany, Brucek, Zhang, Zhiru
Format: Conference Proceeding
Language:English
Published: ACM 01.06.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can then be used to generate detailed power profiles of the same blocks under different workloads. We evaluate the performance of several established ML models on this task, including ridge regression, gradient tree boosting, multi-layer perceptron, and convolutional neural network (CNN). For average power estimation, ML-based techniques can achieve an average error of less than 1% across a diverse set of realistic benchmarks, outperforming a commercial RTL power estimation tool in both accuracy and speed (15x faster). For cycle-by-cycle power estimation, PRIMAL is on average 50x faster than a commercial gate-level power analysis tool, with an average error less than 5%. In particular, our CNN-based method achieves a 35x speed-up and an error of 5.2% for cycle-by-cycle power estimation of a RISC-V processor core. Furthermore, our case study on a NoC router shows that PRIMAL can achieve a small estimation error of 4.5% using cycle-approximate traces from SystemC simulation.
AbstractList This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can then be used to generate detailed power profiles of the same blocks under different workloads. We evaluate the performance of several established ML models on this task, including ridge regression, gradient tree boosting, multi-layer perceptron, and convolutional neural network (CNN). For average power estimation, ML-based techniques can achieve an average error of less than 1% across a diverse set of realistic benchmarks, outperforming a commercial RTL power estimation tool in both accuracy and speed (15x faster). For cycle-by-cycle power estimation, PRIMAL is on average 50x faster than a commercial gate-level power analysis tool, with an average error less than 5%. In particular, our CNN-based method achieves a 35x speed-up and an error of 5.2% for cycle-by-cycle power estimation of a RISC-V processor core. Furthermore, our case study on a NoC router shows that PRIMAL can achieve a small estimation error of 4.5% using cycle-approximate traces from SystemC simulation.
Author Keller, Ben
Ren, Haoxing
Khailany, Brucek
Zhou, Yuan
Zhang, Zhiru
Zhang, Yanqing
Author_xml – sequence: 1
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
  email: yz882@cornell.edu
  organization: Cornell Univ., Ithaca, NY, USA
– sequence: 2
  givenname: Haoxing
  surname: Ren
  fullname: Ren, Haoxing
  email: haoxingr@nvidia.com
  organization: NVIDIA Corp., UK
– sequence: 3
  givenname: Yanqing
  surname: Zhang
  fullname: Zhang, Yanqing
  email: yanqingz@nvidia.com
  organization: NVIDIA Corp., UK
– sequence: 4
  givenname: Ben
  surname: Keller
  fullname: Keller, Ben
  email: benk@nvidia.com
  organization: NVIDIA Corp., UK
– sequence: 5
  givenname: Brucek
  surname: Khailany
  fullname: Khailany, Brucek
  email: bkhailany@nvidia.com
  organization: NVIDIA Corp., UK
– sequence: 6
  givenname: Zhiru
  surname: Zhang
  fullname: Zhang, Zhiru
  email: zhiruz@cornell.edu
  organization: Cornell Univ., Ithaca, NY, USA
BookMark eNotzMtKxDAUgOEICjqXtQs3eYHWnNxO4m4YdCx0cBh0PaTJqVY0I6kivr0FXf3wLf4ZO83HTIxdgqgBtLlWCiw6qKeic_qEzSYVyqI0_pwtx_FVCCEdggd3werdvtmu2hu-O35T4U3uqVCOxL_GIT_zbYgvQybeUih5ggU768PbSMv_ztnT3e3j-r5qHzbNetVWQWr8rHpKKYlOBKWo0-QoGRN0cNZbl7yWHiF2EaQGNDqRMphCpKREkCaCJzVnV3_fgYgOH2V4D-Xn4JywiEb9Ap6FQZQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3316781.3317884
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1450367259
9781450367257
EndPage 6
ExternalDocumentID 8806775
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a247t-feddd0b0a33eb4e8ed55a4a86968d942971cbc1241754de357daced30a25c19e3
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482058200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 08:31:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-feddd0b0a33eb4e8ed55a4a86968d942971cbc1241754de357daced30a25c19e3
PageCount 6
ParticipantIDs ieee_primary_8806775
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings of the 56th Annual Design Automation Conference 2019
PublicationTitleAbbrev DAC
PublicationYear 2019
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871918
Score 2.4123018
Snippet This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Encoding
Estimation
Integrated circuit modeling
Logic gates
machine learning
Power estimation
Registers
Solid modeling
Title PRIMAL: Power Inference using Machine Learning
URI https://ieeexplore.ieee.org/document/8806775
WOSCitedRecordID wos000482058200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_2YNHt83uJpvEm4jFgi2LKPRWksykeGmltv5-k-2yInjxlBACYTKBNzN5MwNwk-scuQ0acJYHB8XlIrWcIsMxKz0aYsLzutmEnE7VbKarDty2uTBEVJPPaBCn9V8-rtw2hsqG4a2VUoo92JOy3OVqtfGUaPnrTDXVezIuhkVM8lbZIIzBz-O_2qfU6DE6_N-5R9D_ScNLqhZgjqFDyx4Mqpfx5P75Lqlif7Nk3O6MDPZFMqnJkZQ0dVMXfXgbPb4-PKVN04PU5FxuUk-IyCwzRUHh1hShEIYbFYvYoA7oITNnXUDlgPscqRASjSMsmMmFyzQVJ9BdrpZ0CglzHnMUzjC0XCpnLddeM3K2NF5l_gx6Udb5x66uxbwR8_zv5Qs4CMaC3tGkLqG7WW_pCvbd1-b9c31dK-Mb9wmLag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf7sGj2ya7SZN4E7G02JZFKvRW8jERL63U1t9vsl1WBC-eEkIgJBN4M8mbeQC3mcocM8EC1rAQoNiMp4ZhZDjSnncaCfesFJsQk4mczVTRgLs6FwYRS_IZdmK3_Mt3S7uJT2XdcNd6QvAd2I3KWVW2Vv2iEn1_RWVVv4cy3s1jmrekndCGSI_9ElAp8aN_-L-Vj6D9k4iXFDXEHEMDFy3oFC_D8cPoPimiwlkyrGdGDvtbMi7pkZhUlVPf2vDaf5o-DtJK9iDVGRPr1KNzjhii8xzDuUl0nGumZSxj41TAD0GtsQGXA_IzhzkXTlt0OdEZt1RhfgLNxXKBp5AQ613muNXEGSakNYYprwha09NeUn8GrbjX-ce2ssW82ub538M3sD-Yjkfz0XDyfAEHwXVQW9LUJTTXqw1ewZ79Wr9_rq5Lw3wDbemOsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+56th+Annual+Design+Automation+Conference+2019&rft.atitle=PRIMAL%3A+Power+Inference+using+Machine+Learning&rft.au=Zhou%2C+Yuan&rft.au=Ren%2C+Haoxing&rft.au=Zhang%2C+Yanqing&rft.au=Keller%2C+Ben&rft.date=2019-06-01&rft.pub=ACM&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1145%2F3316781.3317884&rft.externalDocID=8806775