PRIMAL: Power Inference using Machine Learning
This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can t...
Saved in:
| Published in: | Proceedings of the 56th Annual Design Automation Conference 2019 pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
ACM
01.06.2019
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can then be used to generate detailed power profiles of the same blocks under different workloads. We evaluate the performance of several established ML models on this task, including ridge regression, gradient tree boosting, multi-layer perceptron, and convolutional neural network (CNN). For average power estimation, ML-based techniques can achieve an average error of less than 1% across a diverse set of realistic benchmarks, outperforming a commercial RTL power estimation tool in both accuracy and speed (15x faster). For cycle-by-cycle power estimation, PRIMAL is on average 50x faster than a commercial gate-level power analysis tool, with an average error less than 5%. In particular, our CNN-based method achieves a 35x speed-up and an error of 5.2% for cycle-by-cycle power estimation of a RISC-V processor core. Furthermore, our case study on a NoC router shows that PRIMAL can achieve a small estimation error of 4.5% using cycle-approximate traces from SystemC simulation. |
|---|---|
| AbstractList | This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine learning (ML) models with design verification testbenches for characterizing the power of reusable circuit building blocks. The trained models can then be used to generate detailed power profiles of the same blocks under different workloads. We evaluate the performance of several established ML models on this task, including ridge regression, gradient tree boosting, multi-layer perceptron, and convolutional neural network (CNN). For average power estimation, ML-based techniques can achieve an average error of less than 1% across a diverse set of realistic benchmarks, outperforming a commercial RTL power estimation tool in both accuracy and speed (15x faster). For cycle-by-cycle power estimation, PRIMAL is on average 50x faster than a commercial gate-level power analysis tool, with an average error less than 5%. In particular, our CNN-based method achieves a 35x speed-up and an error of 5.2% for cycle-by-cycle power estimation of a RISC-V processor core. Furthermore, our case study on a NoC router shows that PRIMAL can achieve a small estimation error of 4.5% using cycle-approximate traces from SystemC simulation. |
| Author | Keller, Ben Ren, Haoxing Khailany, Brucek Zhou, Yuan Zhang, Zhiru Zhang, Yanqing |
| Author_xml | – sequence: 1 givenname: Yuan surname: Zhou fullname: Zhou, Yuan email: yz882@cornell.edu organization: Cornell Univ., Ithaca, NY, USA – sequence: 2 givenname: Haoxing surname: Ren fullname: Ren, Haoxing email: haoxingr@nvidia.com organization: NVIDIA Corp., UK – sequence: 3 givenname: Yanqing surname: Zhang fullname: Zhang, Yanqing email: yanqingz@nvidia.com organization: NVIDIA Corp., UK – sequence: 4 givenname: Ben surname: Keller fullname: Keller, Ben email: benk@nvidia.com organization: NVIDIA Corp., UK – sequence: 5 givenname: Brucek surname: Khailany fullname: Khailany, Brucek email: bkhailany@nvidia.com organization: NVIDIA Corp., UK – sequence: 6 givenname: Zhiru surname: Zhang fullname: Zhang, Zhiru email: zhiruz@cornell.edu organization: Cornell Univ., Ithaca, NY, USA |
| BookMark | eNotzMtKxDAUgOEICjqXtQs3eYHWnNxO4m4YdCx0cBh0PaTJqVY0I6kivr0FXf3wLf4ZO83HTIxdgqgBtLlWCiw6qKeic_qEzSYVyqI0_pwtx_FVCCEdggd3werdvtmu2hu-O35T4U3uqVCOxL_GIT_zbYgvQybeUih5ggU768PbSMv_ztnT3e3j-r5qHzbNetVWQWr8rHpKKYlOBKWo0-QoGRN0cNZbl7yWHiF2EaQGNDqRMphCpKREkCaCJzVnV3_fgYgOH2V4D-Xn4JywiEb9Ap6FQZQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3316781.3317884 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1450367259 9781450367257 |
| EndPage | 6 |
| ExternalDocumentID | 8806775 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a247t-feddd0b0a33eb4e8ed55a4a86968d942971cbc1241754de357daced30a25c19e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482058200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 08:31:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a247t-feddd0b0a33eb4e8ed55a4a86968d942971cbc1241754de357daced30a25c19e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8806775 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the 56th Annual Design Automation Conference 2019 |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2019 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002871918 |
| Score | 2.4123018 |
| Snippet | This paper introduces PRIMAL, a novel learning-based frame-work that enables fast and accurate power estimation for ASIC designs. PRIMAL trains machine... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models Encoding Estimation Integrated circuit modeling Logic gates machine learning Power estimation Registers Solid modeling |
| Title | PRIMAL: Power Inference using Machine Learning |
| URI | https://ieeexplore.ieee.org/document/8806775 |
| WOSCitedRecordID | wos000482058200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_2YNHt83uJpvEm4jFgi2LKPRWksykeGmltv5-k-2yInjxlBACYTKBNzN5MwNwk-scuQ0acJYHB8XlIrWcIsMxKz0aYsLzutmEnE7VbKarDty2uTBEVJPPaBCn9V8-rtw2hsqG4a2VUoo92JOy3OVqtfGUaPnrTDXVezIuhkVM8lbZIIzBz-O_2qfU6DE6_N-5R9D_ScNLqhZgjqFDyx4Mqpfx5P75Lqlif7Nk3O6MDPZFMqnJkZQ0dVMXfXgbPb4-PKVN04PU5FxuUk-IyCwzRUHh1hShEIYbFYvYoA7oITNnXUDlgPscqRASjSMsmMmFyzQVJ9BdrpZ0CglzHnMUzjC0XCpnLddeM3K2NF5l_gx6Udb5x66uxbwR8_zv5Qs4CMaC3tGkLqG7WW_pCvbd1-b9c31dK-Mb9wmLag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf7sGj2ya7SZN4E7G02JZFKvRW8jERL63U1t9vsl1WBC-eEkIgJBN4M8mbeQC3mcocM8EC1rAQoNiMp4ZhZDjSnncaCfesFJsQk4mczVTRgLs6FwYRS_IZdmK3_Mt3S7uJT2XdcNd6QvAd2I3KWVW2Vv2iEn1_RWVVv4cy3s1jmrekndCGSI_9ElAp8aN_-L-Vj6D9k4iXFDXEHEMDFy3oFC_D8cPoPimiwlkyrGdGDvtbMi7pkZhUlVPf2vDaf5o-DtJK9iDVGRPr1KNzjhii8xzDuUl0nGumZSxj41TAD0GtsQGXA_IzhzkXTlt0OdEZt1RhfgLNxXKBp5AQ613muNXEGSakNYYprwha09NeUn8GrbjX-ce2ssW82ub538M3sD-Yjkfz0XDyfAEHwXVQW9LUJTTXqw1ewZ79Wr9_rq5Lw3wDbemOsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+56th+Annual+Design+Automation+Conference+2019&rft.atitle=PRIMAL%3A+Power+Inference+using+Machine+Learning&rft.au=Zhou%2C+Yuan&rft.au=Ren%2C+Haoxing&rft.au=Zhang%2C+Yanqing&rft.au=Keller%2C+Ben&rft.date=2019-06-01&rft.pub=ACM&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1145%2F3316781.3317884&rft.externalDocID=8806775 |