Personalization without user interruption boosting activity recognition in new subjects using unlabeled data
Activity recognition systems are widely used in monitoring physical and physiological conditions as well as observing the short/long term behavioral patterns for the purpose of improving the health and wellbeing of the users. The major obstacle in widespread use of these systems is the need for coll...
Uložené v:
| Vydané v: | 2017 ACM IEEE 8th International Conference on Cyber Physical Systems (ICCPS) s. 293 - 302 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY, USA
ACM
18.04.2017
|
| Edícia: | ACM Other Conferences |
| Predmet: | |
| ISBN: | 9781450349659, 145034965X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Activity recognition systems are widely used in monitoring physical and physiological conditions as well as observing the short/long term behavioral patterns for the purpose of improving the health and wellbeing of the users. The major obstacle in widespread use of these systems is the need for collecting labeled data to train the activity recognition model. While a personalized model outperforms a user-independent model, collecting labels from every single user is burdensome and in some cases impractical. In this paper, we propose an uninformed cross-subject transfer learning algorithm that leverages the cross-user similarities by constructing a network-based feature-level representation of the data in source and target users and perform a best effort community detection to extract the core observations in target data. Our algorithm uses a heuristic classifier-based mapping to assign activity labels to the core observations. Finally, the output of labeling is conditionally fused with the prediction of the source-model to develop a boosted and personalized activity recognition algorithm. Our analysis on real-world data demonstrates the superiority of our approach. Our algorithm achieves over 87% accuracy on average which is 7% higher than the state-of-the art approach. |
|---|---|
| AbstractList | Activity recognition systems are widely used in monitoring physical and physiological conditions as well as observing the short/long term behavioral patterns for the purpose of improving the health and wellbeing of the users. The major obstacle in widespread use of these systems is the need for collecting labeled data to train the activity recognition model. While a personalized model outperforms a user-independent model, collecting labels from every single user is burdensome and in some cases impractical. In this paper, we propose an uninformed cross-subject transfer learning algorithm that leverages the cross-user similarities by constructing a network-based feature-level representation of the data in source and target users and perform a best effort community detection to extract the core observations in target data. Our algorithm uses a heuristic classifier-based mapping to assign activity labels to the core observations. Finally, the output of labeling is conditionally fused with the prediction of the source-model to develop a boosted and personalized activity recognition algorithm. Our analysis on real-world data demonstrates the superiority of our approach. Our algorithm achieves over 87% accuracy on average which is 7% higher than the state-of-the art approach. |
| Author | Ghasemzadeh, Hassan Fallahzadeh, Ramin |
| Author_xml | – sequence: 1 givenname: Ramin surname: Fallahzadeh fullname: Fallahzadeh, Ramin email: rfallahz@eecs.wsu.edu organization: Washington State University – sequence: 2 givenname: Hassan surname: Ghasemzadeh fullname: Ghasemzadeh, Hassan email: hassan@eecs.wsu.edu organization: Washington State University |
| BookMark | eNqNkD1PwzAQho0ACSiZGVgywtBw_o5HVPElVYIBZssxF2Fo48pOhODXk9JMTEyvTs-rO91zQg662CEhZxQqSoW84iAlgKh-k8o9UhhdjwC4MEqa_T_zESlyfgcAakTNOT8ml0-YcuzcKny7PsSu_Az9Wxz6csiYytD1mNKw2ZJTcti6VcZiyhl5ub15XtzPl493D4vr5dwxofs5qvFgralqhGdees-wFUo5YFIwJrw06CUwhTU4baj28AqNNw0HgS2jns_I-W5vQES7SWHt0pfVZnyC1iO92FHn17aJ8SNbCnbrwk4u7ORirFb_rNomBWz5D0Y_XLA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| Copyright | 2017 ACM |
| Copyright_xml | – notice: 2017 ACM |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/3055004.3055015 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781450349659 145034965X |
| EndPage | 302 |
| ExternalDocumentID | 7945018 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IEGSK OCL RIB RIC RIE RIL AAWTH LHSKQ |
| ID | FETCH-LOGICAL-a247t-e67818716b4c2c5cc2ef466a0254224c59ec5026e80a7917c0d0bc9b304ef21c3 |
| IEDL.DBID | RIE |
| ISBN | 9781450349659 145034965X |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424191900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:21 EDT 2025 Wed Jan 31 06:43:20 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | cross-subject boosting uninformed transfer learning activity recognition |
| Language | English |
| License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org |
| LinkModel | DirectLink |
| MeetingName | ICCPS '17: ACM/IEEE 8th International Conference on Cyber-Physical Systems |
| MergedId | FETCHMERGED-LOGICAL-a247t-e67818716b4c2c5cc2ef466a0254224c59ec5026e80a7917c0d0bc9b304ef21c3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_7945018 acm_books_10_1145_3055004_3055015_brief acm_books_10_1145_3055004_3055015 |
| PublicationCentury | 2000 |
| PublicationDate | 20170418 2017-April |
| PublicationDateYYYYMMDD | 2017-04-18 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 20170418 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationSeriesTitle | ACM Other Conferences |
| PublicationTitle | 2017 ACM IEEE 8th International Conference on Cyber Physical Systems (ICCPS) |
| PublicationTitleAbbrev | ICCPS |
| PublicationYear | 2017 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0001948333 |
| Score | 1.8873595 |
| Snippet | Activity recognition systems are widely used in monitoring physical and physiological conditions as well as observing the short/long term behavioral patterns... |
| SourceID | ieee acm |
| SourceType | Publisher |
| StartPage | 293 |
| SubjectTerms | Activity recognition Adaptation models Classification algorithms Computing methodologies -- Machine learning Computing methodologies -- Machine learning -- Learning paradigms -- Multi-task learning -- Transfer learning cross-subject boosting Machine learning algorithms Prediction algorithms Training uninformed transfer learning |
| Subtitle | boosting activity recognition in new subjects using unlabeled data |
| Title | Personalization without user interruption |
| URI | https://ieeexplore.ieee.org/document/7945018 |
| WOSCitedRecordID | wos000424191900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEvPlqxvlhB8GLaJLt5rDdfxYOUIhZ6C5vNBnpoInn4-53dpK2CIF6SsCQEdob9dmbn-wbgOk1xW8GEbTEe-nihnhUmrmMJN0b44SyQiRFxfQ2m03Cx4LMO3G64MEopU3ymRvrRnOUnuax1qmyMvqP157rQDYKg4Wpt8ymchZTSVr3HYd5Ya1mhC4zMXbe97Qq5-tFExWDIZP9_fz-AwZaMR2YbmDmEjsqOYO-bjmAfVrP1lrohVRKdXc3riszRwYhJ-hW1WRvuyEOel7rUmdzLpnEEeVvXEOGHy4zgskdwOdH5mZKYigIyz9BXEJ8S8iQqMYD55Pn98cVq-yjgjLOgshQCkqMDo5hJV3pSuiplvi80ER4RXHpcSQ9jMRXaIsDwTdqJHUseU5up1HUkPYZelmfqBIgIEs9JHZ7SWKKFHZ4IGsqUO66Po7Y3hCuc5EgHCGXUcJ69qDVE1BpiCDd_vhPFxVKlQ-hrM0QfjfBG1Frg9PfhM9h1Neaasppz6FVFrS5gR35Wy7K4NN7yBQ7EvC4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-2KagvfkxxfkYQfLGuaZO18c2voTjHkA18K2mawh7Wytb593tJ66YgiC9tCS2F3JFf7nK_3wGcpyluK5h0HSbCDl587oSJRx3pxQg_ggUqsSKuvaDfD9_exKAGlwsujNbaFp_pK_Noz_KTXM1NqqyNvmP05-qwwhnzaMnWWmZUBAt936_0eyjjbaNmhU5wZe-m8W1dqsmPNioWRbqb__v_Fuwu6XhksACabajpbAc2vikJNmEy-NpUl7RKYvKr-bwgI3QxYtN-07ldHa7JbZ7PTLEzuVFl6wjy-lVFhB-OM4ILH8EFxWRoZsTWFJBRht6CCJWQe1nIXRh1H4Z3j07VSQHnnAWFoxGSqAmNYqY8xZXydMo6HWmo8IjhigutOEZjOnRlgAGcchM3ViL2XaZTjyp_DxpZnul9IDJIOE2pSP1YoY2pSKQfqlRQr4OjLm_BGU5yZEKEWVSynnlUGSKqDNGCiz_fieLpWKctaBozRO-l9EZUWeDg9-FTWHscvvSi3lP_-RDWPYPAtsjmCBrFdK6PYVV9FOPZ9MR6zicE9L91 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+ACM+IEEE+8th+International+Conference+on+Cyber+Physical+Systems+%28ICCPS%29&rft.atitle=Personalization+without+User+Interruption%3A+Boosting+Activity+Recognition+in+New+Subjects+Using+Unlabeled+Data&rft.au=Fallahzadeh%2C+Ramin&rft.au=Ghasemzadeh%2C+Hassan&rft.date=2017-04-01&rft.pub=ACM&rft.spage=293&rft.epage=302&rft_id=info:doi/10.1145%2F3055004.3055015&rft.externalDocID=7945018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/sc.gif&client=summon&freeimage=true |

