GraFBoost: Using Accelerated Flash Storage for External Graph Analytics

We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server w...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - International Symposium on Computer Architecture pp. 411 - 424
Main Authors: Jun, Sang-Woo, Wright, Andy, Zhang, Sizhuo, Xu, Shuotao, Arvind
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2018
Subjects:
ISSN:2575-713X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server with 128 GB of DRAM. We demonstrate that despite the relatively small amount of DRAM, GraFBoost achieves high performance with very large graphs no other system can handle, and rivals the performance of the fastest software platforms on sizes of graphs that existing platforms can handle. Unlike in-memory and semi-external systems, GraFBoost uses a constant amount of memory for all problems, and its performance decreases very slowly as graph sizes increase, allowing GraFBoost to scale to much larger problems than possible with existing systems while using much less resources on a single-node system. The key component of GraFBoost is the sort-reduce accelerator, which implements a novel method to sequentialize fine-grained random accesses to flash storage. The sort-reduce accelerator logs random update requests and then uses hardware-accelerated external sorting with interleaved reduction functions. GraFBoost also stores newly updated vertex values generated in each superstep of the algorithm lazily with the old vertex values to further reduce I/O traffic. We evaluate the performance of GraFBoost for PageRank, breadth-first search and betweenness centrality on our FPGA-based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB flash) and compare it to other graph processing systems including a pure software implementation of GrapFBoost.
AbstractList We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server with 128 GB of DRAM. We demonstrate that despite the relatively small amount of DRAM, GraFBoost achieves high performance with very large graphs no other system can handle, and rivals the performance of the fastest software platforms on sizes of graphs that existing platforms can handle. Unlike in-memory and semi-external systems, GraFBoost uses a constant amount of memory for all problems, and its performance decreases very slowly as graph sizes increase, allowing GraFBoost to scale to much larger problems than possible with existing systems while using much less resources on a single-node system. The key component of GraFBoost is the sort-reduce accelerator, which implements a novel method to sequentialize fine-grained random accesses to flash storage. The sort-reduce accelerator logs random update requests and then uses hardware-accelerated external sorting with interleaved reduction functions. GraFBoost also stores newly updated vertex values generated in each superstep of the algorithm lazily with the old vertex values to further reduce I/O traffic. We evaluate the performance of GraFBoost for PageRank, breadth-first search and betweenness centrality on our FPGA-based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB flash) and compare it to other graph processing systems including a pure software implementation of GrapFBoost.
Author Wright, Andy
Arvind
Xu, Shuotao
Zhang, Sizhuo
Jun, Sang-Woo
Author_xml – sequence: 1
  givenname: Sang-Woo
  surname: Jun
  fullname: Jun, Sang-Woo
– sequence: 2
  givenname: Andy
  surname: Wright
  fullname: Wright, Andy
– sequence: 3
  givenname: Sizhuo
  surname: Zhang
  fullname: Zhang, Sizhuo
– sequence: 4
  givenname: Shuotao
  surname: Xu
  fullname: Xu, Shuotao
– sequence: 5
  surname: Arvind
  fullname: Arvind
BookMark eNotjrFOwzAURQ0CibZ0ZmDxDyQ8x3bisIWoCZUqMZRKbNWL89xGCkllZ6B_TySYzl3O1Vmyu2EciLEnAbEQkL9s92URJyBMDAAquWFLoaVJdW4U3LJFojMdZUJ-PbB1CF0DUmsN2sgFq2uP1ds4humVH0I3nHhhLfXkcaKWVz2GM99Po8cTcTd6vvmZyA_Y89m7nHkxz-vU2fDI7h32gdb_XLFDtfks36PdR70ti12EicqmqDWZw9y2ziSgBGBjjU2EcFIaTHPbWGHNHEuuzSU2kkTbzN2ANgXSqSO5Ys9_vx0RHS---0Z_PRolUqOU_AWWj03K
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCA.2018.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538659840
9781538659847
EISSN 2575-713X
EndPage 424
ExternalDocumentID 8416844
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ZY4
ID FETCH-LOGICAL-a247t-d87fa9cdf820410abc8c211f338a69cbc1c8575efd93ab3e1db7130ac60e56fe3
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458810500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:48:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-d87fa9cdf820410abc8c211f338a69cbc1c8575efd93ab3e1db7130ac60e56fe3
PageCount 14
ParticipantIDs ieee_primary_8416844
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle Proceedings - International Symposium on Computer Architecture
PublicationTitleAbbrev ISCA
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib035550583
ssj0019956
Score 2.4273782
Snippet We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of...
SourceID ieee
SourceType Publisher
StartPage 411
SubjectTerms Benchmark testing
Field programmable gate arrays
flash storage
FPGA
graph analytics
Hardware
hardware acceleration
Programming
Random access memory
Software
Software algorithms
sort-reduce
Title GraFBoost: Using Accelerated Flash Storage for External Graph Analytics
URI https://ieeexplore.ieee.org/document/8416844
WOSCitedRecordID wos000458810500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMZPbcXAVKBFvOWBkVDnQWyzlaopSKiqVEDdKse-CJYGtSl_P2c3LUJiYYsyRefH5y---x3ANRY8RUlOVUeRDmiGmECSKgSoScu0iIz1sOq3ZzEey9lMTRpws6uFQUSffIa37tHf5dvSrN2vsp67IpNJ0oSmEOmmVms7d0g2Scvlbhd2lcdpjfIJueo9TQd9l8glPZ4z-tVLxUtJ1v7fRxxA96cmj012anMIDVwcQXvblIHVa7QDo9FSZw9luarumc8HYH1jSFscEsKyjA7L72xKRpv2EUYHVjasMdBs5NDVzENKHLq5C6_Z8GXwGNTdEijMiagCK0WhlbEFaXoScp0bacjdFeRBdapMbkLjunFiYVWs8xhDm5NB5dqkHO_SAuNjaC3KBZ4Ak4mldS_j2IQq4VroOFLIVZHHYS40T0-h4-Iy_9wAMeZ1SM7-fn0O-y7wm_yqC2hVyzVewp75qj5Wyys_it-gZpzH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMdfEE30hArG3_bg0Wm3la31hoQBEQkJaLiRru2iF2Zg-Pf7WgbGxIu3Zafl9ce33_W9zwO4NRmNDEenKoNAejhDlMdRFTwjUctkHCjtYNVvg3g45NOpGFXgblsLY4xxyWfm3j66u3ydq5X9VfZgr8g4Yzuw22QsoOtqrc3sQeFENefbfdjWHkclzMen4qE_brdsKhd3gM7gVzcVJyZJ7X-fcQiNn6o8MtrqzRFUzPwYapu2DKRcpXXodhcyecrzZfFIXEYAaSmF6mKhEJokeFx-J2O02riTEDyykk4JgiZdC68mDlNi4c0NeE06k3bPK_slYKBZXHiax5kUSmeo6synMlVcob_L0IXKSKhU-cr24zSZFqFMQ-PrFC0qlSqiphllJjyB6jyfm1MgnGlc-TwMlS8YlbEMA2GoyNLQT2NJozOo27jMPtdIjFkZkvO_X9_Afm_yMpgN-sPnCziwg7DOtrqEarFYmSvYU1_Fx3Jx7Ub0G_jYoA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Computer+Architecture&rft.atitle=GraFBoost%3A+Using+Accelerated+Flash+Storage+for+External+Graph+Analytics&rft.au=Jun%2C+Sang-Woo&rft.au=Wright%2C+Andy&rft.au=Zhang%2C+Sizhuo&rft.au=Xu%2C+Shuotao&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2575-713X&rft.spage=411&rft.epage=424&rft_id=info:doi/10.1109%2FISCA.2018.00042&rft.externalDocID=8416844