GraFBoost: Using Accelerated Flash Storage for External Graph Analytics
We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server w...
Saved in:
| Published in: | Proceedings - International Symposium on Computer Architecture pp. 411 - 424 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2018
|
| Subjects: | |
| ISSN: | 2575-713X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server with 128 GB of DRAM. We demonstrate that despite the relatively small amount of DRAM, GraFBoost achieves high performance with very large graphs no other system can handle, and rivals the performance of the fastest software platforms on sizes of graphs that existing platforms can handle. Unlike in-memory and semi-external systems, GraFBoost uses a constant amount of memory for all problems, and its performance decreases very slowly as graph sizes increase, allowing GraFBoost to scale to much larger problems than possible with existing systems while using much less resources on a single-node system. The key component of GraFBoost is the sort-reduce accelerator, which implements a novel method to sequentialize fine-grained random accesses to flash storage. The sort-reduce accelerator logs random update requests and then uses hardware-accelerated external sorting with interleaved reduction functions. GraFBoost also stores newly updated vertex values generated in each superstep of the algorithm lazily with the old vertex values to further reduce I/O traffic. We evaluate the performance of GraFBoost for PageRank, breadth-first search and betweenness centrality on our FPGA-based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB flash) and compare it to other graph processing systems including a pure software implementation of GrapFBoost. |
|---|---|
| AbstractList | We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server with 128 GB of DRAM. We demonstrate that despite the relatively small amount of DRAM, GraFBoost achieves high performance with very large graphs no other system can handle, and rivals the performance of the fastest software platforms on sizes of graphs that existing platforms can handle. Unlike in-memory and semi-external systems, GraFBoost uses a constant amount of memory for all problems, and its performance decreases very slowly as graph sizes increase, allowing GraFBoost to scale to much larger problems than possible with existing systems while using much less resources on a single-node system. The key component of GraFBoost is the sort-reduce accelerator, which implements a novel method to sequentialize fine-grained random accesses to flash storage. The sort-reduce accelerator logs random update requests and then uses hardware-accelerated external sorting with interleaved reduction functions. GraFBoost also stores newly updated vertex values generated in each superstep of the algorithm lazily with the old vertex values to further reduce I/O traffic. We evaluate the performance of GraFBoost for PageRank, breadth-first search and betweenness centrality on our FPGA-based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB flash) and compare it to other graph processing systems including a pure software implementation of GrapFBoost. |
| Author | Wright, Andy Arvind Xu, Shuotao Zhang, Sizhuo Jun, Sang-Woo |
| Author_xml | – sequence: 1 givenname: Sang-Woo surname: Jun fullname: Jun, Sang-Woo – sequence: 2 givenname: Andy surname: Wright fullname: Wright, Andy – sequence: 3 givenname: Sizhuo surname: Zhang fullname: Zhang, Sizhuo – sequence: 4 givenname: Shuotao surname: Xu fullname: Xu, Shuotao – sequence: 5 surname: Arvind fullname: Arvind |
| BookMark | eNotjrFOwzAURQ0CibZ0ZmDxDyQ8x3bisIWoCZUqMZRKbNWL89xGCkllZ6B_TySYzl3O1Vmyu2EciLEnAbEQkL9s92URJyBMDAAquWFLoaVJdW4U3LJFojMdZUJ-PbB1CF0DUmsN2sgFq2uP1ds4humVH0I3nHhhLfXkcaKWVz2GM99Po8cTcTd6vvmZyA_Y89m7nHkxz-vU2fDI7h32gdb_XLFDtfks36PdR70ti12EicqmqDWZw9y2ziSgBGBjjU2EcFIaTHPbWGHNHEuuzSU2kkTbzN2ANgXSqSO5Ys9_vx0RHS---0Z_PRolUqOU_AWWj03K |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ISCA.2018.00042 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538659840 9781538659847 |
| EISSN | 2575-713X |
| EndPage | 424 |
| ExternalDocumentID | 8416844 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO ZY4 |
| ID | FETCH-LOGICAL-a247t-d87fa9cdf820410abc8c211f338a69cbc1c8575efd93ab3e1db7130ac60e56fe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458810500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:48:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a247t-d87fa9cdf820410abc8c211f338a69cbc1c8575efd93ab3e1db7130ac60e56fe3 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_8416844 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - International Symposium on Computer Architecture |
| PublicationTitleAbbrev | ISCA |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib035550583 ssj0019956 |
| Score | 2.4273782 |
| Snippet | We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 411 |
| SubjectTerms | Benchmark testing Field programmable gate arrays flash storage FPGA graph analytics Hardware hardware acceleration Programming Random access memory Software Software algorithms sort-reduce |
| Title | GraFBoost: Using Accelerated Flash Storage for External Graph Analytics |
| URI | https://ieeexplore.ieee.org/document/8416844 |
| WOSCitedRecordID | wos000458810500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMZPbcXAVKBFvOWBkVDnQWyzlaopSKiqVEDdKse-CJYGtSl_P2c3LUJiYYsyRefH5y---x3ANRY8RUlOVUeRDmiGmECSKgSoScu0iIz1sOq3ZzEey9lMTRpws6uFQUSffIa37tHf5dvSrN2vsp67IpNJ0oSmEOmmVms7d0g2Scvlbhd2lcdpjfIJueo9TQd9l8glPZ4z-tVLxUtJ1v7fRxxA96cmj012anMIDVwcQXvblIHVa7QDo9FSZw9luarumc8HYH1jSFscEsKyjA7L72xKRpv2EUYHVjasMdBs5NDVzENKHLq5C6_Z8GXwGNTdEijMiagCK0WhlbEFaXoScp0bacjdFeRBdapMbkLjunFiYVWs8xhDm5NB5dqkHO_SAuNjaC3KBZ4Ak4mldS_j2IQq4VroOFLIVZHHYS40T0-h4-Iy_9wAMeZ1SM7-fn0O-y7wm_yqC2hVyzVewp75qj5Wyys_it-gZpzH |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMdfEE30hArG3_bg0Wm3la31hoQBEQkJaLiRru2iF2Zg-Pf7WgbGxIu3Zafl9ce33_W9zwO4NRmNDEenKoNAejhDlMdRFTwjUctkHCjtYNVvg3g45NOpGFXgblsLY4xxyWfm3j66u3ydq5X9VfZgr8g4Yzuw22QsoOtqrc3sQeFENefbfdjWHkclzMen4qE_brdsKhd3gM7gVzcVJyZJ7X-fcQiNn6o8MtrqzRFUzPwYapu2DKRcpXXodhcyecrzZfFIXEYAaSmF6mKhEJokeFx-J2O02riTEDyykk4JgiZdC68mDlNi4c0NeE06k3bPK_slYKBZXHiax5kUSmeo6synMlVcob_L0IXKSKhU-cr24zSZFqFMQ-PrFC0qlSqiphllJjyB6jyfm1MgnGlc-TwMlS8YlbEMA2GoyNLQT2NJozOo27jMPtdIjFkZkvO_X9_Afm_yMpgN-sPnCziwg7DOtrqEarFYmSvYU1_Fx3Jx7Ub0G_jYoA4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Computer+Architecture&rft.atitle=GraFBoost%3A+Using+Accelerated+Flash+Storage+for+External+Graph+Analytics&rft.au=Jun%2C+Sang-Woo&rft.au=Wright%2C+Andy&rft.au=Zhang%2C+Sizhuo&rft.au=Xu%2C+Shuotao&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2575-713X&rft.spage=411&rft.epage=424&rft_id=info:doi/10.1109%2FISCA.2018.00042&rft.externalDocID=8416844 |