Optimal scheduling of in-situ analysis for large-scale scientific simulations

Today's leadership computing facilities have enabled the execution of transformative simulations at unprecedented scales. However, analyzing the huge amount of output from these simulations remains a challenge. Most analyses of this output is performed in post-processing mode at the end of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 11
Hlavní autoři: Malakar, Preeti, Vishwanath, Venkatram, Munson, Todd, Knight, Christopher, Hereld, Mark, Leyffer, Sven, Papka, Michael E.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 15.11.2015
Edice:ACM Conferences
Témata:
ISBN:1450337236, 9781450337236
ISSN:2167-4337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Today's leadership computing facilities have enabled the execution of transformative simulations at unprecedented scales. However, analyzing the huge amount of output from these simulations remains a challenge. Most analyses of this output is performed in post-processing mode at the end of the simulation. The time to read the output for the analysis can be significantly high due to poor I/O bandwidth, which increases the end-to-end simulation-analysis time. Simulation-time analysis can reduce this end-to-end time. In this work, we present the scheduling of in-situ analysis as a numerical optimization problem to maximize the number of online analyses subject to resource constraints such as I/O bandwidth, network bandwidth, rate of computation and available memory. We demonstrate the effectiveness of our approach through two application case studies on the IBM Blue Gene/Q system.
ISBN:1450337236
9781450337236
ISSN:2167-4337
DOI:10.1145/2807591.2807656