Interactive Hierarchical Task Learning from a Single Demonstration

We have developed learning and interaction algorithms to support a human teaching hierarchical task models to a robot using a single demonstration in the context of a mixed-initiative interaction with bi-directional communication. In particular, we have identified and implemented two important heuri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hri '15: ACM/IEEE International Conference on Human-Robot Interaction USB Stick s. 205 - 212
Hlavní autoři: Mohseni-Kabir, Anahita, Rich, Charles, Chernova, Sonia, Sidner, Candace L., Miller, Daniel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 01.03.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We have developed learning and interaction algorithms to support a human teaching hierarchical task models to a robot using a single demonstration in the context of a mixed-initiative interaction with bi-directional communication. In particular, we have identified and implemented two important heuristics for suggesting task groupings based on the physical structure of the manipulated artifact and on the data flow between tasks. We have evaluated our algorithms with users in a simulated environment and shown both that the overall approach is usable and that the grouping suggestions significantly improve the learning and interaction.
DOI:10.1145/2696454.2696474