Understanding Unsuccessful Executions in Big-Data Systems
Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running app...
Uloženo v:
| Vydáno v: | 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing s. 741 - 744 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running applications, jobs running in big-data systems experience unsuccessful terminations of different nature. While a large body of existing studies sheds light on failures occurred in large-scale data enters, the current literature overlooks the characteristics and the performance impairment of a broader class of unsuccessful executions which can arise due to application failures, dependency violations, machine constraints, job kills, and task pre-emption. Nonetheless, deepening our understanding in this field is of paramount importance, as unsuccessful executions can lower user satisfaction, impair reliability, and lead to a high resource waste. In this paper, we describe the problem of unsuccessful executions in big-data systems, and highlight the critical importance of improving our knowledge on this subject. We review the existing literature on this field, discuss its limitations, and present our own contributions to the problem, along with our research plan for the future. |
|---|---|
| AbstractList | Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running applications, jobs running in big-data systems experience unsuccessful terminations of different nature. While a large body of existing studies sheds light on failures occurred in large-scale data enters, the current literature overlooks the characteristics and the performance impairment of a broader class of unsuccessful executions which can arise due to application failures, dependency violations, machine constraints, job kills, and task pre-emption. Nonetheless, deepening our understanding in this field is of paramount importance, as unsuccessful executions can lower user satisfaction, impair reliability, and lead to a high resource waste. In this paper, we describe the problem of unsuccessful executions in big-data systems, and highlight the critical importance of improving our knowledge on this subject. We review the existing literature on this field, discuss its limitations, and present our own contributions to the problem, along with our research plan for the future. |
| Author | Rosa, Andrea Binder, Walter Chen, Lydia Y. |
| Author_xml | – sequence: 1 givenname: Andrea surname: Rosa fullname: Rosa, Andrea email: andrea.rosa@usi.ch organization: Fac. of Inf. Lugano, Univ. della Svizzera italiana (USI), Lugano, Switzerland – sequence: 2 givenname: Lydia Y. surname: Chen fullname: Chen, Lydia Y. email: yic@zurich.ibm.com organization: Zurich Cloud Server Technol. Group, IBM Res. Lab., Ruschlikon, Switzerland – sequence: 3 givenname: Walter surname: Binder fullname: Binder, Walter email: walter.binder@usi.ch organization: Fac. of Inf. Lugano, Univ. della Svizzera italiana (USI), Lugano, Switzerland |
| BookMark | eNotzk9LwzAYgPEICurs2YOXfoHW933zrzlq3aYw8KA9jyRNRmDLpOnAfXsFPT23H88tu8zHHBi7R2gRwTz2_XpKY0uAskXeXbDK6A6FNqYDUHTNqlKSAwFacAJ1w8yQxzCV2eYx5V095HLyPpQST_t6-R38aU7HXOqU6-e0a17sbOuPc5nDodyxq2j3JVT_XbBhtfzsX5vN-_qtf9o0loSeGyfJRUOkyZKNwrjgAX_XSEkPgJ3zauRRAyFxZbkNIJC8wciVVtI6vmAPf24KIWy_pnSw03mrUZIUiv8AJrxHGA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCGrid.2015.138 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781479980062 1479980064 |
| EndPage | 744 |
| ExternalDocumentID | 7152546 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a247t-b52bf92272a2af49bec01138265c0018bc6d3f7021236a3ae0412c91f36765ab3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380493100081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:46:56 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a247t-b52bf92272a2af49bec01138265c0018bc6d3f7021236a3ae0412c91f36765ab3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7152546 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-May |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing |
| PublicationTitleAbbrev | CCGrid |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib040743206 ssib026764721 |
| Score | 1.5730416 |
| Snippet | Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 741 |
| SubjectTerms | Analytical models Correlation Hardware Predictive models Reliability Training |
| Title | Understanding Unsuccessful Executions in Big-Data Systems |
| URI | https://ieeexplore.ieee.org/document/7152546 |
| WOSCitedRecordID | wos000380493100081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwFIWttmJgAtQi3vLAiNv4Ha-UFgZUdaCoW-X4gSKhFLUJ4udjJ6F0YGGLMuXa17q-sc93ALilmDtqmEGh9-CIOZ2g1IsUacGxt8oaWXMLXp_lbJYul2reAXc7LYxzrr585obxsT7Lt2tTxV9lIxnNepjogq6UstFq_eQOETKC0He5ymJpJIloaT44UaPx-HGTRzgo5kMc9Sh7dip1NZke_e87jsHgV5YH57uCcwI6rugDtdiXp8BFsa1qD0RfvcPJlzNNYsG8gPf5G3rQpYYtpXwAFtPJy_gJtX4ISBMmS5RxknlFiCSaaM9UGP6wOmloELiJ5nqZEZZ6GaHtVGiqXWRpGYV9pLJxndFT0CvWhTsD0BhCktBKhA2WZiL1OrGGYivDbsEqmphz0I9hrz4a5MWqjfji79eX4DCOanMP8Ar0yk3lrsGB-Szz7eamnqdvhTOSDw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMYbRBM9qQHjtzt4tLB-r1cRxIiEAxhupOtas8QMA5vxz7fdJnLw4q3Zqe_6Nm_frc_vAeCWIGaIphq63oNBalQII8sjqDhDNpGJFiW34HUkxuNoPpeTBrjbaGGMMeXlM9Pxw_JffrLUhf9U1hXerIfyHbDLKMWoUmv9ZA_mwqPQN9lKfXHEIa95PiiU3V7vcZV6PChiHeQVKVuGKmU9GRz-byZHoP0rzAsmm5JzDBomawE52xaoBLNsXZQuiLZ4D_pfRlepFaRZcJ--wQeVq6DmlLfBbNCf9oawdkSAClORw5jh2EqMBVZYWSrdArj9SVyLwLS314s1T4gVHttOuCLKeJqWlsh6LhtTMTkBzWyZmVMQaI1x6JoJd8RSlEdWhYkmKBHuvJBIEuoz0PJhLz4q6MWijvj878c3YH84fRktRk_j5wtw4N9wdSvwEjTzVWGuwJ7-zNP16rpcs29SVZVW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+15th+IEEE%2FACM+International+Symposium+on+Cluster%2C+Cloud+and+Grid+Computing&rft.atitle=Understanding+Unsuccessful+Executions+in+Big-Data+Systems&rft.au=Rosa%2C+Andrea&rft.au=Chen%2C+Lydia+Y.&rft.au=Binder%2C+Walter&rft.date=2015-05-01&rft.pub=IEEE&rft.spage=741&rft.epage=744&rft_id=info:doi/10.1109%2FCCGrid.2015.138&rft.externalDocID=7152546 |