Understanding Unsuccessful Executions in Big-Data Systems

Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running app...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing s. 741 - 744
Hlavní autoři: Rosa, Andrea, Chen, Lydia Y., Binder, Walter
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running applications, jobs running in big-data systems experience unsuccessful terminations of different nature. While a large body of existing studies sheds light on failures occurred in large-scale data enters, the current literature overlooks the characteristics and the performance impairment of a broader class of unsuccessful executions which can arise due to application failures, dependency violations, machine constraints, job kills, and task pre-emption. Nonetheless, deepening our understanding in this field is of paramount importance, as unsuccessful executions can lower user satisfaction, impair reliability, and lead to a high resource waste. In this paper, we describe the problem of unsuccessful executions in big-data systems, and highlight the critical importance of improving our knowledge on this subject. We review the existing literature on this field, discuss its limitations, and present our own contributions to the problem, along with our research plan for the future.
AbstractList Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems, running enterprise services, and computing data-intensive tasks. Due to the growing scale of these systems and the complexity of running applications, jobs running in big-data systems experience unsuccessful terminations of different nature. While a large body of existing studies sheds light on failures occurred in large-scale data enters, the current literature overlooks the characteristics and the performance impairment of a broader class of unsuccessful executions which can arise due to application failures, dependency violations, machine constraints, job kills, and task pre-emption. Nonetheless, deepening our understanding in this field is of paramount importance, as unsuccessful executions can lower user satisfaction, impair reliability, and lead to a high resource waste. In this paper, we describe the problem of unsuccessful executions in big-data systems, and highlight the critical importance of improving our knowledge on this subject. We review the existing literature on this field, discuss its limitations, and present our own contributions to the problem, along with our research plan for the future.
Author Rosa, Andrea
Binder, Walter
Chen, Lydia Y.
Author_xml – sequence: 1
  givenname: Andrea
  surname: Rosa
  fullname: Rosa, Andrea
  email: andrea.rosa@usi.ch
  organization: Fac. of Inf. Lugano, Univ. della Svizzera italiana (USI), Lugano, Switzerland
– sequence: 2
  givenname: Lydia Y.
  surname: Chen
  fullname: Chen, Lydia Y.
  email: yic@zurich.ibm.com
  organization: Zurich Cloud Server Technol. Group, IBM Res. Lab., Ruschlikon, Switzerland
– sequence: 3
  givenname: Walter
  surname: Binder
  fullname: Binder, Walter
  email: walter.binder@usi.ch
  organization: Fac. of Inf. Lugano, Univ. della Svizzera italiana (USI), Lugano, Switzerland
BookMark eNotzk9LwzAYgPEICurs2YOXfoHW933zrzlq3aYw8KA9jyRNRmDLpOnAfXsFPT23H88tu8zHHBi7R2gRwTz2_XpKY0uAskXeXbDK6A6FNqYDUHTNqlKSAwFacAJ1w8yQxzCV2eYx5V095HLyPpQST_t6-R38aU7HXOqU6-e0a17sbOuPc5nDodyxq2j3JVT_XbBhtfzsX5vN-_qtf9o0loSeGyfJRUOkyZKNwrjgAX_XSEkPgJ3zauRRAyFxZbkNIJC8wciVVtI6vmAPf24KIWy_pnSw03mrUZIUiv8AJrxHGA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCGrid.2015.138
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479980062
1479980064
EndPage 744
ExternalDocumentID 7152546
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a247t-b52bf92272a2af49bec01138265c0018bc6d3f7021236a3ae0412c91f36765ab3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380493100081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-b52bf92272a2af49bec01138265c0018bc6d3f7021236a3ae0412c91f36765ab3
PageCount 4
ParticipantIDs ieee_primary_7152546
PublicationCentury 2000
PublicationDate 2015-May
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationTitle 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
PublicationTitleAbbrev CCGrid
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib040743206
ssib026764721
Score 1.5730416
Snippet Big-data applications are being increasingly used in today's large-scale data enters for a large variety of purposes, such as solving scientific problems,...
SourceID ieee
SourceType Publisher
StartPage 741
SubjectTerms Analytical models
Correlation
Google
Hardware
Predictive models
Reliability
Training
Title Understanding Unsuccessful Executions in Big-Data Systems
URI https://ieeexplore.ieee.org/document/7152546
WOSCitedRecordID wos000380493100081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwFIWttmJgAtQi3vLAiNv4Ha-UFgZUdaCoW-X4gSKhFLUJ4udjJ6F0YGGLMuXa17q-sc93ALilmDtqmEGh9-CIOZ2g1IsUacGxt8oaWXMLXp_lbJYul2reAXc7LYxzrr585obxsT7Lt2tTxV9lIxnNepjogq6UstFq_eQOETKC0He5ymJpJIloaT44UaPx-HGTRzgo5kMc9Sh7dip1NZke_e87jsHgV5YH57uCcwI6rugDtdiXp8BFsa1qD0RfvcPJlzNNYsG8gPf5G3rQpYYtpXwAFtPJy_gJtX4ISBMmS5RxknlFiCSaaM9UGP6wOmloELiJ5nqZEZZ6GaHtVGiqXWRpGYV9pLJxndFT0CvWhTsD0BhCktBKhA2WZiL1OrGGYivDbsEqmphz0I9hrz4a5MWqjfji79eX4DCOanMP8Ar0yk3lrsGB-Szz7eamnqdvhTOSDw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMYbRBM9qQHjtzt4tLB-r1cRxIiEAxhupOtas8QMA5vxz7fdJnLw4q3Zqe_6Nm_frc_vAeCWIGaIphq63oNBalQII8sjqDhDNpGJFiW34HUkxuNoPpeTBrjbaGGMMeXlM9Pxw_JffrLUhf9U1hXerIfyHbDLKMWoUmv9ZA_mwqPQN9lKfXHEIa95PiiU3V7vcZV6PChiHeQVKVuGKmU9GRz-byZHoP0rzAsmm5JzDBomawE52xaoBLNsXZQuiLZ4D_pfRlepFaRZcJ--wQeVq6DmlLfBbNCf9oawdkSAClORw5jh2EqMBVZYWSrdArj9SVyLwLS314s1T4gVHttOuCLKeJqWlsh6LhtTMTkBzWyZmVMQaI1x6JoJd8RSlEdWhYkmKBHuvJBIEuoz0PJhLz4q6MWijvj878c3YH84fRktRk_j5wtw4N9wdSvwEjTzVWGuwJ7-zNP16rpcs29SVZVW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+15th+IEEE%2FACM+International+Symposium+on+Cluster%2C+Cloud+and+Grid+Computing&rft.atitle=Understanding+Unsuccessful+Executions+in+Big-Data+Systems&rft.au=Rosa%2C+Andrea&rft.au=Chen%2C+Lydia+Y.&rft.au=Binder%2C+Walter&rft.date=2015-05-01&rft.pub=IEEE&rft.spage=741&rft.epage=744&rft_id=info:doi/10.1109%2FCCGrid.2015.138&rft.externalDocID=7152546