A tensor-based volterra series black-box nonlinear system identification and simulation framework

Tensors are a multi-linear generalization of matrices to their d-way counterparts, and are receiving intense interest recently due to their natural representation of high-dimensional data and the availability of fast tensor decomposition algorithms. Given the input-output data of a nonlinear system/...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 7
Hlavní autoři: Batselier, Kim, Zhongming Chen, Haotian Liu, Ngai Wong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 01.11.2016
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Tensors are a multi-linear generalization of matrices to their d-way counterparts, and are receiving intense interest recently due to their natural representation of high-dimensional data and the availability of fast tensor decomposition algorithms. Given the input-output data of a nonlinear system/circuit, this paper presents a non-linear model identification and simulation framework built on top of Volterra series and its seamless integration with tensor arithmetic. By exploiting partially-symmetric polyadic decompositions of sparse Toeplitz tensors, the proposed framework permits a pleasantly scalable way to incorporate high-order Volterra kernels. Such an approach largely eludes the curse of dimensionality and allows computationally fast modeling and simulation beyond weakly non-linear systems. The black-box nature of the model also hides structural information of the system/circuit and encapsulates it in terms of compact tensors. Numerical examples are given to verify the efficacy, efficiency and generality of this tensor-based modeling and simulation framework.
ISSN:1558-2434
DOI:10.1145/2966986.2966996