DeftNN addressing bottlenecks for DNN execution on GPUs via synapse vector elimination and near-compute data fission
Deep neural networks (DNNs) are key computational building blocks for emerging classes of web services that interact in real time with users via voice, images and video inputs. Although GPUs have gained popularity as a key accelerator platform for deep learning workloads, the increasing demand for D...
Uloženo v:
| Vydáno v: | MICRO-50 : the 50th annual IEEE/ACM International Symposium on Microarchitecture : proceedings : October 14-18, 2017, Cambridge, MA s. 786 - 799 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
14.10.2017
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 1450349528, 9781450349529 |
| ISSN: | 2379-3155 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!

