Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

Over the last few years, there has been substantial research on automated analysis, testing, and debugging of Ethereum smart contracts. However, it is not trivial to compare and reproduce that research. To address this, we present an empirical evaluation of 9 state-of-the-art automated analysis tool...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) S. 530 - 541
Hauptverfasser: Durieux, Thomas, Ferreira, Joao F., Abreu, Rui, Cruz, Pedro
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 01.10.2020
Schlagworte:
ISSN:1558-1225
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Over the last few years, there has been substantial research on automated analysis, testing, and debugging of Ethereum smart contracts. However, it is not trivial to compare and reproduce that research. To address this, we present an empirical evaluation of 9 state-of-the-art automated analysis tools using two new datasets: i) a dataset of 69 annotated vulnerable smart contracts that can be used to evaluate the precision of analysis tools; and ii) a dataset with all the smart contracts in the Ethereum Blockchain that have Solidity source code available on Etherscan (a total of 47,518 contracts). The datasets are part of SmartBugs, a new extendable execution framework that we created to facilitate the integration and comparison between multiple analysis tools and the analysis of Ethereum smart contracts. We used SmartBugs to execute the 9 automated analysis tools on the two datasets. In total, we ran 428,337 analyses that took approximately 564 days and 3 hours, being the largest experimental setup to date both in the number of tools and in execution time. We found that only 42% of the vulnerabilities from our annotated dataset are detected by all the tools, with the tool Mythril having the higher accuracy (27%). When considering the largest dataset, we observed that 97% of contracts are tagged as vulnerable, thus suggesting a considerable number of false positives. Indeed, only a small number of vulnerabilities (and of only two categories) were detected simultaneously by four or more tools.
AbstractList Over the last few years, there has been substantial research on automated analysis, testing, and debugging of Ethereum smart contracts. However, it is not trivial to compare and reproduce that research. To address this, we present an empirical evaluation of 9 state-of-the-art automated analysis tools using two new datasets: i) a dataset of 69 annotated vulnerable smart contracts that can be used to evaluate the precision of analysis tools; and ii) a dataset with all the smart contracts in the Ethereum Blockchain that have Solidity source code available on Etherscan (a total of 47,518 contracts). The datasets are part of SmartBugs, a new extendable execution framework that we created to facilitate the integration and comparison between multiple analysis tools and the analysis of Ethereum smart contracts. We used SmartBugs to execute the 9 automated analysis tools on the two datasets. In total, we ran 428,337 analyses that took approximately 564 days and 3 hours, being the largest experimental setup to date both in the number of tools and in execution time. We found that only 42% of the vulnerabilities from our annotated dataset are detected by all the tools, with the tool Mythril having the higher accuracy (27%). When considering the largest dataset, we observed that 97% of contracts are tagged as vulnerable, thus suggesting a considerable number of false positives. Indeed, only a small number of vulnerabilities (and of only two categories) were detected simultaneously by four or more tools.
Author Durieux, Thomas
Ferreira, Joao F.
Cruz, Pedro
Abreu, Rui
Author_xml – sequence: 1
  givenname: Thomas
  surname: Durieux
  fullname: Durieux, Thomas
  email: thomas@durieux.me
  organization: INESC-ID and IST, University of Lisbon,Portugal
– sequence: 2
  givenname: Joao F.
  surname: Ferreira
  fullname: Ferreira, Joao F.
  email: joao@joaoff.com
  organization: INESC-ID and IST, University of Lisbon,Portugal
– sequence: 3
  givenname: Rui
  surname: Abreu
  fullname: Abreu, Rui
  email: rui@computer.org
  organization: INESC-ID and IST, University of Lisbon,Portugal
– sequence: 4
  givenname: Pedro
  surname: Cruz
  fullname: Cruz, Pedro
  email: pedrocrvz@gmail.com
  organization: INESC-ID and IST, University of Lisbon,Portugal
BookMark eNotjk1LAzEUAKMoaKtnD17yA9yal5e3SY6l1A8oFLSeS7r7Fld2N2WTKv33FvQ0MIdhJuJiiAMLcQdqBmDoEdFaBzBDdApLcyYmJ6vQggY8F9dA5ArQmq7EJKUvpVRpvL8W62W_b8e2Cp184--Wf2Rs5PyQYx8y13I-hO6Y2iQ3MXZJxkEa-0DOymX-5JEPvXzvw5jlIg55DFVON-KyCV3i239OxcfTcrN4KVbr59fFfFUEbWwu_K5xVHmlTEVcl6wtlRUhAOrdjoKxhlhTcI2vGwUKqGTHofbMFNgZxKm4_-u2zLzdj-1p47j12hmlEX8BlKFN-Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3377811.3380364
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1450371213
9781450371216
EISSN 1558-1225
EndPage 541
ExternalDocumentID 9284023
Genre orig-research
GrantInformation_xml – fundername: FCT, Fundação para a Ciência e a Tecnologia
  grantid: UIDB/50021/2020,PTDC/CCI-COM/29300/2017
  funderid: 10.13039/501100001871
– fundername: Horizon 2020
  grantid: 822404
  funderid: 10.13039/100010661
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a247t-9bf85c9004c5ed6e2756c531132bb5a4745e25a8f9df010156e8ead9ee5ae8433
IEDL.DBID RIE
ISICitedReferencesCount 269
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652529800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-9bf85c9004c5ed6e2756c531132bb5a4745e25a8f9df010156e8ead9ee5ae8433
PageCount 12
ParticipantIDs ieee_primary_9284023
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)
PublicationTitleAbbrev ICSE
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0006499
ssj0002870079
Score 2.6153824
Snippet Over the last few years, there has been substantial research on automated analysis, testing, and debugging of Ethereum smart contracts. However, it is not...
SourceID ieee
SourceType Publisher
StartPage 530
SubjectTerms Blockchain
Debugging
Ethereum
Reproducible Bugs
Smart contracts
Solidity
Testing
Title Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts
URI https://ieeexplore.ieee.org/document/9284023
WOSCitedRecordID wos000652529800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwED0B6tCJtlD1Wx46EqCxHdtjVYE6UaRSiQ3ZzllCKgmCpL-_dhKoKnXpZmWynPPdvTu_dwCPzDJqRGwjNFxFjKUuktp6zOMwGQslHKW6GjYhZjO5XKp5CwZHLgwiVo_PcBiWVS8_zW0ZSmUj5X2pjzFtaAuR1FytYz0lNOzGoePUeOHEp_KNlM8T4yNKReBUDj0iC523X7NUqlAy7f5vE2fQ_-Hkkfkx2pxDC7ML6B6GMpDmjvbgbbLZrivdD1LX_UnuyHNZ5D41xZQcREjIIs8_9yTPCBMDLgWZhEwQyw1533hrIkG1KhCo9n34mE4WL69RMzUh0jETRaSMk9wqb_yWY5pg0He3_qZ52GkM10wwjjHX0qnUBYE5nqD05qQQuUbJKL2ETpZneAWEGak9xJHCGMq8H1R2LBLrFPocRjPtrqEXzme1rYUxVs3R3Pz9-RZO4wBWq5dwd9ApdiXew4n9Ktb73UP1N78BmR2fIA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSECsZve_DIwrptt-3RGAhGRBIx4Uba7jQhkV0Cu_5-22XBmHjx1uyp6U5n5s30vUHonhpKNI9MAJrJgNLEBkIZh3ksxCGX3BKiymETfDQS06kc11B7x4UBgPLxGXT8suzlJ5kpfKmsK50vdTFmD-0zSqNww9baVVR8yy70PafKD8cuma_EfB4o6xLCPauy4zCZ7739mqZSBpN-43_bOEatH1YeHu_izQmqQXqKGtuxDLi6pU301lss56XyB95U_nFm8WORZy45hQRvZUjwJMs-1zhLMeVtJjju-VwQigV-Xzh7wl63ylOo1i300e9NngZBNTchUBHleSC1FcxIZ_6GQRKDV3g37q454Kk1U5RTBhFTwsrEeok5FoNwBiUBmAJBCTlD9TRL4RxhqoVyIEdwrQl1nlCakMfGSnBZjKLKXqCmP5_ZciONMauO5vLvz3focDB5Hc6Gz6OXK3QUeehavou7RvV8VcANOjBf-Xy9ui3_7DcR-qJn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+IEEE%2FACM+42nd+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=Empirical+Review+of+Automated+Analysis+Tools+on+47%2C587+Ethereum+Smart+Contracts&rft.au=Durieux%2C+Thomas&rft.au=Ferreira%2C+Joao+F.&rft.au=Abreu%2C+Rui&rft.au=Cruz%2C+Pedro&rft.date=2020-10-01&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=530&rft.epage=541&rft_id=info:doi/10.1145%2F3377811.3380364&rft.externalDocID=9284023