Abstraction based reachability analysis for finite branching stochastic hybrid systems

In this paper, we address the problem of computing the probability of reaching a desired set in a subclass of stochastic hybrid systems, wherein the stochasticity arises from the randomness of the initial distribution of continuous states, and the probabilistic transitions in the underlying finite s...

Full description

Saved in:
Bibliographic Details
Published in:2017 ACM IEEE 8th International Conference on Cyber Physical Systems (ICCPS) pp. 121 - 130
Main Authors: Zhang, Wenji, Prabhakar, Pavithra, Natarajan, Balasubramaniam
Format: Conference Proceeding
Language:English
Published: New York, NY, USA ACM 18.04.2017
Series:ACM Other Conferences
Subjects:
ISBN:9781450349659, 145034965X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we address the problem of computing the probability of reaching a desired set in a subclass of stochastic hybrid systems, wherein the stochasticity arises from the randomness of the initial distribution of continuous states, and the probabilistic transitions in the underlying finite state Markov chain. In particular, the continuous dynamics is deterministic for each mode and hence, there are finitely many probabilistic successors for a given state. We exploit this property and extend a partition based abstraction technique developed for finite state systems to the stochastic hybrid system setting. We prove the correctness of our algorithm by defining appropriate simulation relations that relate the stochastic hybrid system to a finite state "generalized" probabilistic transition system that we obtain as a result of abstraction. We show that the simulation relation defined provides upper and lower bounds on the probability of reachability. In particular, tighter bounds can be obtained by refining the partition. We apply our algorithm to automatically analyze a smart home application.
AbstractList In this paper, we address the problem of computing the probability of reaching a desired set in a subclass of stochastic hybrid systems, wherein the stochasticity arises from the randomness of the initial distribution of continuous states, and the probabilistic transitions in the underlying finite state Markov chain. In particular, the continuous dynamics is deterministic for each mode and hence, there are finitely many probabilistic successors for a given state. We exploit this property and extend a partition based abstraction technique developed for finite state systems to the stochastic hybrid system setting. We prove the correctness of our algorithm by defining appropriate simulation relations that relate the stochastic hybrid system to a finite state ``generalized" probabilistic transition system that we obtain as a result of abstraction. We show that the simulation relation defined provides upper and lower bounds on the probability of reachability. In particular, tighter bounds can be obtained by refining the partition. We apply our algorithm to automatically analyze a smart home application.
Author Prabhakar, Pavithra
Natarajan, Balasubramaniam
Zhang, Wenji
Author_xml – sequence: 1
  givenname: Wenji
  surname: Zhang
  fullname: Zhang, Wenji
  email: wenjizhang@ksu.edu
  organization: Kansas State University
– sequence: 2
  givenname: Pavithra
  surname: Prabhakar
  fullname: Prabhakar, Pavithra
  email: pprabhakar@ksu.edu
  organization: Kansas State University
– sequence: 3
  givenname: Balasubramaniam
  surname: Natarajan
  fullname: Natarajan, Balasubramaniam
  email: bala@ksu.edu
  organization: Kansas State University
BookMark eNqNkDtPAzEQhI0ACQipKWhc0uTYO9uxXUYRAaRINEBr-UkMiQ_Zbu7fcyGpqKhGq9lZzX5X6Cz1ySN000LTtpTdE2AMgDa_2pETNJVcjAYQKudMnv6ZL9C0lE8AaCUVhJBL9L4wpWZta-wTNrp4h7PXdqNN3MY6YJ30diix4NBnHGKK1WOTdbKbmD5wqf24Wmq0eDOYHB0uQ6l-V67RedDb4qdHnaC31cPr8mm2fnl8Xi7WM91RXmcieNMBdRIs594GogEE0S4wRl0XbBhrSmJEa6hwRjBr5yApJ44z1_HQkQm6PdyN3nv1neNO50FxOX4Me7c5uNrulOn7r6JaUHtw6ghOHcGpsbwPY-DunwHyA6yxbg0
CODEN IEEPAD
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3055004.3055023
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450349659
145034965X
EndPage 130
ExternalDocumentID 7945002
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
ID FETCH-LOGICAL-a247t-8feb204d90c77ecf3a0083adf554d2fcf94893b81b48db85cc609473d75d27f23
IEDL.DBID RIE
ISBN 9781450349659
145034965X
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424191900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:01 EDT 2025
Wed Jan 31 06:43:20 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords generalized probabilistic transition system
abstraction based analysis
infinite state Markov chain
reachability
stochastic hybrid system
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName ICCPS '17: ACM/IEEE 8th International Conference on Cyber-Physical Systems
MergedId FETCHMERGED-LOGICAL-a247t-8feb204d90c77ecf3a0083adf554d2fcf94893b81b48db85cc609473d75d27f23
PageCount 10
ParticipantIDs acm_books_10_1145_3055004_3055023
ieee_primary_7945002
acm_books_10_1145_3055004_3055023_brief
PublicationCentury 2000
PublicationDate 20170418
2017-April
PublicationDateYYYYMMDD 2017-04-18
2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 20170418
  day: 18
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Other Conferences
PublicationTitle 2017 ACM IEEE 8th International Conference on Cyber Physical Systems (ICCPS)
PublicationTitleAbbrev ICCPS
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0001948333
Score 1.6743321
Snippet In this paper, we address the problem of computing the probability of reaching a desired set in a subclass of stochastic hybrid systems, wherein the...
SourceID ieee
acm
SourceType Publisher
StartPage 121
SubjectTerms abstraction based analysis
Computational modeling
Cyber-physical systems
generalized probabilistic transition system
infinite state markov chain
Markov processes
Partitioning algorithms
Probabilistic logic
reachability
Reachability analysis
Software and its engineering -- Software organization and properties -- Software functional properties -- Formal methods
stochastic hybrid system
Theory of computation -- Logic -- Abstraction
Theory of computation -- Logic -- Automated reasoning
Theory of computation -- Logic -- Verification by model checking
Theory of computation -- Models of computation -- Probabilistic computation
Title Abstraction based reachability analysis for finite branching stochastic hybrid systems
URI https://ieeexplore.ieee.org/document/7945002
WOSCitedRecordID wos000424191900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAXH61YX6wgeDFtmk2yydGKpQcpxRe9hc0-oAdbaVOh_96ZTWwVBPGUEDYJ-ViYbybzfQNwZX3pGyq6K6MsJih55CVGWk908QaLATuVzjL_QQyHyXicjmpws9bCGGNc85lp06n7l69nakmlsg7uncg5R24JEZdarU09JQ0Tznnl3tMNow55WeEWaLujG0ck1duPISouhvT3_vf2fWhuxHhstA4zB1Az00PY_eYj2IDX25wqFk6iwHoYlzR7pC7J0oN7xb6cRxgyVNafEM1kPZqoQeUn9lTMcCn5NbPBigRcrLIxb8JL__75buBVAxM8GYSi8BKLebIf6tRXQiDUXBLDktoiZ9CBVTYlq5kcmWqY6DyJlIoxuxNci0gHwgb8COrT2dQcA9OSnPlCTD5iZCg8zOOuTmLfCK6QY2jbgktEM6NMYJGV4uYoqxDPKsRbcP3nmgw_y-DTGoR39l46bGQV1Ce_Xz6FnYCCq-ufOYN6MV-ac9hWH8VkMb9w2-ITb_W0bQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2KCurFj1asnysIXkybZjfZ5GjFUrGWolV6W5L9gB5spU2F_ntntrFVEMRTQtgk5LEwbybz3hByaf3UN1h0V0ZZSFCy0ItNaj3RgBssBOwkdZb5HdHtxoNB0iuR66UWxhjjms9MDU_dv3w9VjMsldVh74TOOXI95DzwF2qtVUUl4TFjrPDvafCwjm5WsAlq7ugGEqXq7ccYFRdFWjv_e_8uqazkeLS3DDR7pGRG-2T7m5NgmbzeZFizcCIF2oTIpOkT9kkuXLjn9Mt7hAJHpa0hEk3axJkaWICiz_kYlqJjM23PUcJFCyPzCnlp3fVv214xMsFLAy5yL7aQKftcJ74SAsBmKXKsVFtgDTqwyiZoNpMBV-WxzuJQqQjyO8G0CHUgbMAOyNpoPDKHhOoUvfk4pB8RcBTGs6ih48g3gilgGdpWyQWgKTEXmMqFvDmUBeKyQLxKrv5cI-GzDDytjHjL94XHhiygPvr98jnZbPcfO7Jz3304JlsBhlrXTXNC1vLJzJySDfWRD6eTM7dFPgEDire0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+ACM+IEEE+8th+International+Conference+on+Cyber+Physical+Systems+%28ICCPS%29&rft.atitle=Abstraction+Based+Reachability+Analysis+for+Finite+Branching+Stochastic+Hybrid+Systems&rft.au=Wenji+Zhang&rft.au=Prabhakar%2C+Pavithra&rft.au=Natarajan%2C+Balasubramaniam&rft.date=2017-04-01&rft.pub=ACM&rft.spage=121&rft.epage=130&rft_id=info:doi/10.1145%2F3055004.3055023&rft.externalDocID=7945002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349659/sc.gif&client=summon&freeimage=true