GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm

DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it direct...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9
Hlavní autori: Kao, Sheng-Chun, Krishna, Tushar
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Association on Computer Machinery 02.11.2020
Predmet:
ISSN:1558-2434
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it directly determines the amount of reuse that the accelerator can leverage from the DNN. Moreover, instead of using a fixed mapping for every DNN layer, research has revealed the benefit of optimizing per-layer mappings. However, determining the right mapping, given an accelerator and layer is still an open question. The immense space of mappings (or map-space) makes brute-forced exhaustive search methods unapproachable. In this paper, we propose a domain-specific genetic algorithm-based method, GAMMA, which is specially designed for this HW-mapping problem. In contrast to prior works that either target simple rigid accelerators with a limited map-space or choose from a restricted set of mappings, we construct an extremely flexible map-space and show that GAMMA can explore the space and determine an optimized mapping with high sample efficiency. We quantitatively compare GAMMA with many popular optimization methods and observe GAMMA consistently finds better solutions.
AbstractList DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it directly determines the amount of reuse that the accelerator can leverage from the DNN. Moreover, instead of using a fixed mapping for every DNN layer, research has revealed the benefit of optimizing per-layer mappings. However, determining the right mapping, given an accelerator and layer is still an open question. The immense space of mappings (or map-space) makes brute-forced exhaustive search methods unapproachable. In this paper, we propose a domain-specific genetic algorithm-based method, GAMMA, which is specially designed for this HW-mapping problem. In contrast to prior works that either target simple rigid accelerators with a limited map-space or choose from a restricted set of mappings, we construct an extremely flexible map-space and show that GAMMA can explore the space and determine an optimized mapping with high sample efficiency. We quantitatively compare GAMMA with many popular optimization methods and observe GAMMA consistently finds better solutions.
Author Kao, Sheng-Chun
Krishna, Tushar
Author_xml – sequence: 1
  givenname: Sheng-Chun
  surname: Kao
  fullname: Kao, Sheng-Chun
  email: felix@gatech.edu
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Tushar
  surname: Krishna
  fullname: Krishna, Tushar
  email: tushar@ece.gatech.edu
  organization: Georgia Institute of Technology
BookMark eNotjLFOwzAUAA0CiVI6M7D4B1Jsv2fHYYsKtEhNWYoYKyd5bi2lcZUYJP4eEEx3t9w1u-hjT4zdSjGXEvU9oBAg1BxQagPFGZsVuZXGaFSgEM7ZRGptsx_FKzYbx1ALRIG6sHbCtsuyqsoHXn6keHQp9HueDsRX77xyp9NvRs8fNxtexZa6kceel01DHQ0uxWHkn8HxJfWUQsPLbh-HkA7HG3bpXTfS7J9T9vb8tF2ssvXr8mVRrjOnME9ZXhMY4yn3uqmBgGzbKktWujr3HrwTpFxrjQOB1hvyhVNArQFZkEYCmLK7v28got1pCEc3fO0KpQ2ChG_AllHY
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3400302.3415639
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665423243
1665423242
EISSN 1558-2434
EndPage 9
ExternalDocumentID 9256431
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1909900
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a247t-7be366fe7f5cb3e3e8dd28e81ab7ff3fa0e2ad86a3048f6ef9a23ed6319e54e33
IEDL.DBID RIE
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671087100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-7be366fe7f5cb3e3e8dd28e81ab7ff3fa0e2ad86a3048f6ef9a23ed6319e54e33
PageCount 9
ParticipantIDs ieee_primary_9256431
PublicationCentury 2000
PublicationDate 2020-Nov.-2
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-2
  day: 02
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2020
Publisher Association on Computer Machinery
Publisher_xml – name: Association on Computer Machinery
SSID ssib044045988
ssj0020286
Score 2.5176418
Snippet DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer architecture
DNN accelerators
DNN models
domain-specific genetic algorithm
GAMMA
Genetic Algorithm
genetic algorithms
HW mapping
ML accelerator
multidimensional loops
neural nets
Optimization methods
optimized mapping
Parallel processing
per-layer mappings
Reconfigurable device
search problems
Space exploration
Two dimensional displays
Title GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9256431
WOSCitedRecordID wos000671087100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCLP8D4Oz14dDDabu28LSpykIUDKjfSta9IApuBwd9vOyZy8OKt6aFp2vf6vdf2-x5Cdym3dqQ587SNXj1GtLLnICOe0ULzwBgTlay091eeJGI0igY1dL_lwgBA-fkMWq5ZvuXrXK3cVVk7svjMHGl6j_Nww9X6sR0ncxeU0ltVsmVxM6ykfDosaFPmzJm0qEtYXGXwnVoqJZR0j_43iWPU_OXk4cEWbU5QDbJTdLgjJ9hAw5e4348fcLwqcheIZhNswzvc-8B96WQYJjg3-ClJsCuANlviPMOxUhZ3yqf2JV5PJXYy1NaWcDyb5Itp8Tlvorfu8_Cx51VVEzxJGC88ngINQwPcBCqlQEFoTQSIjky5MdRIH4jUIpTUOq8JwUSSUNCh9UUIGFB6hupZnsE5wkLaIUnk223WzERpZFTgKwbQEYr5ylyghluf8ddGGGNcLc3l391X6IC4ZNXdyZJrVC8WK7hB-2pdTJeL23I3vwFI-p_d
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImqgXf4Dxtz14dDDabt28LSpiZAsHVG6ka1-RBDcDg7_fdiBy8OKt6aFp2vf6vdf2-x5CNyk3dqQ4c5SJXh1GlDTnICOOVoHintY6LFlpb12eJMFgEPYq6HbNhQGA8vMZNGyzfMtXuZzbq7JmaPCZWdL0lscYcZdsrR_rsUJ3Xim-tUq3DHL6KzGfFvOalFmDJg1qUxZbG3yjmkoJJu39_03jANV_WXm4t8abQ1SB7AjtbQgK1lD_KYrj6A5H8yK3oWg2wibAw513HAsrxDDCucYPSYJtCbTJDOcZjqQ0yFM-ts_wYiywFaI21oSjySifjouPzzp6bT_27zvOqm6CIwjjhcNToL6vgWtPphQoBEqRAIKWSLnWVAsXiFCBL6hxX-2DDgWhoHzjjeAxoPQYVbM8gxOEA2GGJKFrNloxHaahlp4rGUArkMyV-hTV7PoMv5bSGMPV0pz93X2Ndjr9uDvsPicv52iX2NTV3tCSC1QtpnO4RNtyUYxn06tyZ78ByeKjJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=GAMMA%3A+Automating+the+HW+Mapping+of+DNN+Models+on+Accelerators+via+Genetic+Algorithm&rft.au=Kao%2C+Sheng-Chun&rft.au=Krishna%2C+Tushar&rft.date=2020-11-02&rft.pub=Association+on+Computer+Machinery&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3400302.3415639&rft.externalDocID=9256431