GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm
DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it direct...
Uložené v:
| Vydané v: | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Association on Computer Machinery
02.11.2020
|
| Predmet: | |
| ISSN: | 1558-2434 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it directly determines the amount of reuse that the accelerator can leverage from the DNN. Moreover, instead of using a fixed mapping for every DNN layer, research has revealed the benefit of optimizing per-layer mappings. However, determining the right mapping, given an accelerator and layer is still an open question. The immense space of mappings (or map-space) makes brute-forced exhaustive search methods unapproachable. In this paper, we propose a domain-specific genetic algorithm-based method, GAMMA, which is specially designed for this HW-mapping problem. In contrast to prior works that either target simple rigid accelerators with a limited map-space or choose from a restricted set of mappings, we construct an extremely flexible map-space and show that GAMMA can explore the space and determine an optimized mapping with high sample efficiency. We quantitatively compare GAMMA with many popular optimization methods and observe GAMMA consistently finds better solutions. |
|---|---|
| AbstractList | DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these choices is called a mapping. It has been shown that the mapping plays an extremely crucial role in overall performance and efficiency, as it directly determines the amount of reuse that the accelerator can leverage from the DNN. Moreover, instead of using a fixed mapping for every DNN layer, research has revealed the benefit of optimizing per-layer mappings. However, determining the right mapping, given an accelerator and layer is still an open question. The immense space of mappings (or map-space) makes brute-forced exhaustive search methods unapproachable. In this paper, we propose a domain-specific genetic algorithm-based method, GAMMA, which is specially designed for this HW-mapping problem. In contrast to prior works that either target simple rigid accelerators with a limited map-space or choose from a restricted set of mappings, we construct an extremely flexible map-space and show that GAMMA can explore the space and determine an optimized mapping with high sample efficiency. We quantitatively compare GAMMA with many popular optimization methods and observe GAMMA consistently finds better solutions. |
| Author | Kao, Sheng-Chun Krishna, Tushar |
| Author_xml | – sequence: 1 givenname: Sheng-Chun surname: Kao fullname: Kao, Sheng-Chun email: felix@gatech.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Tushar surname: Krishna fullname: Krishna, Tushar email: tushar@ece.gatech.edu organization: Georgia Institute of Technology |
| BookMark | eNotjLFOwzAUAA0CiVI6M7D4B1Jsv2fHYYsKtEhNWYoYKyd5bi2lcZUYJP4eEEx3t9w1u-hjT4zdSjGXEvU9oBAg1BxQagPFGZsVuZXGaFSgEM7ZRGptsx_FKzYbx1ALRIG6sHbCtsuyqsoHXn6keHQp9HueDsRX77xyp9NvRs8fNxtexZa6kceel01DHQ0uxWHkn8HxJfWUQsPLbh-HkA7HG3bpXTfS7J9T9vb8tF2ssvXr8mVRrjOnME9ZXhMY4yn3uqmBgGzbKktWujr3HrwTpFxrjQOB1hvyhVNArQFZkEYCmLK7v28got1pCEc3fO0KpQ2ChG_AllHY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3400302.3415639 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665423243 1665423242 |
| EISSN | 1558-2434 |
| EndPage | 9 |
| ExternalDocumentID | 9256431 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 1909900 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a247t-7be366fe7f5cb3e3e8dd28e81ab7ff3fa0e2ad86a3048f6ef9a23ed6319e54e33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671087100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a247t-7be366fe7f5cb3e3e8dd28e81ab7ff3fa0e2ad86a3048f6ef9a23ed6319e54e33 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9256431 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-2 |
| PublicationDateYYYYMMDD | 2020-11-02 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design |
| PublicationTitleAbbrev | ICCAD |
| PublicationYear | 2020 |
| Publisher | Association on Computer Machinery |
| Publisher_xml | – name: Association on Computer Machinery |
| SSID | ssib044045988 ssj0020286 |
| Score | 2.5176418 |
| Snippet | DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Computer architecture DNN accelerators DNN models domain-specific genetic algorithm GAMMA Genetic Algorithm genetic algorithms HW mapping ML accelerator multidimensional loops neural nets Optimization methods optimized mapping Parallel processing per-layer mappings Reconfigurable device search problems Space exploration Two dimensional displays |
| Title | GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm |
| URI | https://ieeexplore.ieee.org/document/9256431 |
| WOSCitedRecordID | wos000671087100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCLP8D4Oz14dDDabu28LSpykIUDKjfSta9IApuBwd9vOyZy8OKt6aFp2vf6vdf2-x5Cdym3dqQ587SNXj1GtLLnICOe0ULzwBgTlay091eeJGI0igY1dL_lwgBA-fkMWq5ZvuXrXK3cVVk7svjMHGl6j_Nww9X6sR0ncxeU0ltVsmVxM6ykfDosaFPmzJm0qEtYXGXwnVoqJZR0j_43iWPU_OXk4cEWbU5QDbJTdLgjJ9hAw5e4348fcLwqcheIZhNswzvc-8B96WQYJjg3-ClJsCuANlviPMOxUhZ3yqf2JV5PJXYy1NaWcDyb5Itp8Tlvorfu8_Cx51VVEzxJGC88ngINQwPcBCqlQEFoTQSIjky5MdRIH4jUIpTUOq8JwUSSUNCh9UUIGFB6hupZnsE5wkLaIUnk223WzERpZFTgKwbQEYr5ylyghluf8ddGGGNcLc3l391X6IC4ZNXdyZJrVC8WK7hB-2pdTJeL23I3vwFI-p_d |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImqgXf4Dxtz14dDDabt28LSpiZAsHVG6ka1-RBDcDg7_fdiBy8OKt6aFp2vf6vdf2-x5CNyk3dqQ4c5SJXh1GlDTnICOOVoHintY6LFlpb12eJMFgEPYq6HbNhQGA8vMZNGyzfMtXuZzbq7JmaPCZWdL0lscYcZdsrR_rsUJ3Xim-tUq3DHL6KzGfFvOalFmDJg1qUxZbG3yjmkoJJu39_03jANV_WXm4t8abQ1SB7AjtbQgK1lD_KYrj6A5H8yK3oWg2wibAw513HAsrxDDCucYPSYJtCbTJDOcZjqQ0yFM-ts_wYiywFaI21oSjySifjouPzzp6bT_27zvOqm6CIwjjhcNToL6vgWtPphQoBEqRAIKWSLnWVAsXiFCBL6hxX-2DDgWhoHzjjeAxoPQYVbM8gxOEA2GGJKFrNloxHaahlp4rGUArkMyV-hTV7PoMv5bSGMPV0pz93X2Ndjr9uDvsPicv52iX2NTV3tCSC1QtpnO4RNtyUYxn06tyZ78ByeKjJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=GAMMA%3A+Automating+the+HW+Mapping+of+DNN+Models+on+Accelerators+via+Genetic+Algorithm&rft.au=Kao%2C+Sheng-Chun&rft.au=Krishna%2C+Tushar&rft.date=2020-11-02&rft.pub=Association+on+Computer+Machinery&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3400302.3415639&rft.externalDocID=9256431 |