An approximate computing technique for reducing the complexity of a direct-solver for sparse linear systems in real-time video processing

Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings - ACM IEEE Design Automation Conference s. 1 - 6
Hlavní autori: Schaffner, Michael, Gurkaynak, Frank K., Smolic, Aljosa, Kaeslin, Hubert, Benini, Luca
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2014
Predmet:
ISSN:0738-100X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation scheme builds on the observation that, in well-conditioned problems, many elements in the decomposition nearly vanish. Such elements may be pruned from the dependency graph with mild accuracy degradation. Using an example from image-domain warping, we show that pruning reduces the amount of operations per solve by over 75 %, resulting in significant savings in computing time, area or energy.
ISSN:0738-100X
DOI:10.1145/2593069.2593082