Energy-efficient XNOR-free In-Memory BNN Accelerator with Input Distribution Regularization

SRAM-based in-memory Binary Neural Network (BNN) accelerators are garnering interests as a platform for energy-efficient edge neural network computing thanks to their compactness in terms of hardware and neural network parameter size. However, previous works had to modify SRAM cells to support XNOR...

Full description

Saved in:
Bibliographic Details
Published in:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design pp. 1 - 9
Main Authors: Kim, Hyungjun, Oh, Hyunmyung, Kim, Jae-Joon
Format: Conference Proceeding
Language:English
Published: Association on Computer Machinery 02.11.2020
Subjects:
ISSN:1558-2434
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SRAM-based in-memory Binary Neural Network (BNN) accelerators are garnering interests as a platform for energy-efficient edge neural network computing thanks to their compactness in terms of hardware and neural network parameter size. However, previous works had to modify SRAM cells to support XNOR operations on memory array resulting in limited area and energy efficiencies. In this work, we present a conversion method which replaces the signed inputs (+1/-1) of BNN with the unsigned inputs (1/0) without computation error, and vice versa. The method enables BNN computing on conventional 6T SRAM arrays and improves area and energy efficiencies. We also demonstrate that further energy saving is possible by skewing the distribution of binary input data based on regularization during network training. Evaluation results show that the proposed techniques improve the inference energy efficiency by up to 9.4x for various benchmarks over previous works.
AbstractList SRAM-based in-memory Binary Neural Network (BNN) accelerators are garnering interests as a platform for energy-efficient edge neural network computing thanks to their compactness in terms of hardware and neural network parameter size. However, previous works had to modify SRAM cells to support XNOR operations on memory array resulting in limited area and energy efficiencies. In this work, we present a conversion method which replaces the signed inputs (+1/-1) of BNN with the unsigned inputs (1/0) without computation error, and vice versa. The method enables BNN computing on conventional 6T SRAM arrays and improves area and energy efficiencies. We also demonstrate that further energy saving is possible by skewing the distribution of binary input data based on regularization during network training. Evaluation results show that the proposed techniques improve the inference energy efficiency by up to 9.4x for various benchmarks over previous works.
Author Kim, Hyungjun
Oh, Hyunmyung
Kim, Jae-Joon
Author_xml – sequence: 1
  givenname: Hyungjun
  surname: Kim
  fullname: Kim, Hyungjun
  email: hyungjun.kim@postech.ac.kr
  organization: POSTECH
– sequence: 2
  givenname: Hyunmyung
  surname: Oh
  fullname: Oh, Hyunmyung
  email: hyunmyung.oh@postech.ac.kr
  organization: POSTECH
– sequence: 3
  givenname: Jae-Joon
  surname: Kim
  fullname: Kim, Jae-Joon
  email: jaejoon@postech.ac.kr
  organization: POSTECH
BookMark eNotkE1PAjEURavRRETWLtzMHyj247W0S0RUEoSEaGLigrTlFZvADOmUEPz1YnR178lNzuJek4u6qZGQW876nIO6l8CYZKIvgSsN_Iz07MBwrRUIKUCekw5XytBThSvSa9vkGQADZY3pkM9xjXl9pBhjCgnrUn3M5gsaM2I1qekrbpt8rB5ms2oYAm4wu9Lk6pDK12ne7Uv1mNqSk9-X1NTVAtf7jcvp2_3iDbmMbtNi7z-75P1p_DZ6odP582Q0nFInYFCoBosqIvBgVoF5zySidTEaMEqunBAxgABkCrzXTnsWrR3IqGWwbKW8ll1y9-dNiLjc5bR1-bi0Qp0u4PIHYShVfg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3400302.3415641
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665423243
1665423242
EISSN 1558-2434
EndPage 9
ExternalDocumentID 9256541
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a247t-649e5fe41c8dc0bb03ee9aff84853da22fc424e054bb6a6b0f9973f63c90d5b63
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671087100062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-649e5fe41c8dc0bb03ee9aff84853da22fc424e054bb6a6b0f9973f63c90d5b63
PageCount 9
ParticipantIDs ieee_primary_9256541
PublicationCentury 2000
PublicationDate 2020-Nov.-2
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-2
  day: 02
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2020
Publisher Association on Computer Machinery
Publisher_xml – name: Association on Computer Machinery
SSID ssib044045988
ssj0020286
Score 2.2437663
Snippet SRAM-based in-memory Binary Neural Network (BNN) accelerators are garnering interests as a platform for energy-efficient edge neural network computing thanks...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms binary input data
computation error
Computational modeling
conventional 6T SRAM arrays
conversion method
energy conservation
Energy consumption
Energy efficiency
energy-efficient edge neural network computing
energy-efficient XNOR-free in-memory BNN accelerator
Handheld computers
inference energy efficiency
input distribution regularization
memory array
network training
neural chips
neural network parameter size
SRAM cells
SRAM chips
SRAM-based in-memory binary neural network accelerators
Training
Transistors
XNOR operations
Title Energy-efficient XNOR-free In-Memory BNN Accelerator with Input Distribution Regularization
URI https://ieeexplore.ieee.org/document/9256541
WOSCitedRecordID wos000671087100062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwGLRKxQALjxbxlgdG3LqJH_HIoxVIEKoKUCWGKnY-SyxpFRIk_j22G0oHFrYoiSLLcXy5z747hC7AWE0ht46bUEPcLMndPCgoscJ9HkpDngQd9-uDTNNkOlXjFrpcaWEAIGw-g54_DGv5-dzUvlTWVw6fuVepb0gpl1qtn7Hjbe54sN5qyJbDTdFY-QwY78fMD-eoF3vC4uPf17JUApSMdv7XiF3U_dXk4fEKbfZQC4p9tL1mJ9hBb8Mg5CMQbCHcU_A0fZoQWwLg-4I8-k21X_g6TfGVMQ5uwgo79pVYd3lRV_jWu-g2AVh4ElLqy0an2UUvo-HzzR1pwhNIFjFZEcEUcAtsYJLcUK1pDKAyaxPmADrPosgaFjFwf2xai0xoapWSsRWxUTTnWsQHqF3MCzhE2DVJJkrknAtwd9vEZxtxx2AHiWHUZEeo47tptlj6Y8yaHjr--_QJ2oo8Z_Wl2egUtauyhjO0aT6r94_yPLzUb5KIosA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwHG0ImqgXP8D4bQ8eHWxd261HPyAQYRKChsQDWbtfEy-DzGHif29bJnLw4m3ZlqXpur69X_veQ-gGlJY-ZNpwE195ZpZkZh7kvqe5-TyEhCx2Ou7XQZQk8XQqRjV0u9bCAIDbfAYte-jW8rO5WtpSWVsYfGZWpb7FKCXBSq31M3qs0R1z5lsV3TLIySszn4CydkjtgCat0FIWGwC_kabiwKS7_79mHKDmryoPj9Z4c4hqkB-hvQ1DwQZ66zgpnwfOGMI8BU-T57GnCwDcz72h3Vb7he-TBN8pZQDHrbFjW4s1lxfLEj9aH90qAguPXU59USk1m-il25k89LwqPsFLCY1Kj1MBTAMNVJwpX0o_BBCp1jE1EJ2lhGhFCQXzzyYlT7n0tRBRqHmohJ8xycNjVM_nOZwgbJoUxYJnjHEwd-vYphsxw2GDWFFfpaeoYbtptlg5ZMyqHjr7-_Q12ulNhoPZoJ88naNdYhmsLdSSC1QviyVcom31Wb5_FFfuBX8DOOymBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Energy-efficient+XNOR-free+In-Memory+BNN+Accelerator+with+Input+Distribution+Regularization&rft.au=Kim%2C+Hyungjun&rft.au=Oh%2C+Hyunmyung&rft.au=Kim%2C+Jae-Joon&rft.date=2020-11-02&rft.pub=Association+on+Computer+Machinery&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3400302.3415641&rft.externalDocID=9256541