Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks

Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP blocks and carry blocks. Since hardened blocks can be configured in different ways, a variety of datapath patterns can be mapped into these block...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9
Hlavní autori: Ustun, Ecenur, Deng, Chenhui, Pal, Debjit, Li, Zhijing, Zhang, Zhiru
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Association on Computer Machinery 02.11.2020
Predmet:
ISSN:1558-2434
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP blocks and carry blocks. Since hardened blocks can be configured in different ways, a variety of datapath patterns can be mapped into these blocks. We observe that existing high-level synthesis (HLS) tools often fail to capture some of the operation mapping patterns, leading to limited estimation accuracy in terms of resource usage and delay. To address this deficiency, we propose to exploit graph neural networks (GNN) to automatically learn operation mapping patterns. We apply GNN models that are trained on microbenchmarks directly to realistic designs through inductive learning. Experimental results show that our approach can effectively infer various valid mapping patterns on both microbenchmarks and realistic designs. Furthermore, the proposed framework is exploited to improve the accuracy of delay estimation in HLS.
AbstractList Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP blocks and carry blocks. Since hardened blocks can be configured in different ways, a variety of datapath patterns can be mapped into these blocks. We observe that existing high-level synthesis (HLS) tools often fail to capture some of the operation mapping patterns, leading to limited estimation accuracy in terms of resource usage and delay. To address this deficiency, we propose to exploit graph neural networks (GNN) to automatically learn operation mapping patterns. We apply GNN models that are trained on microbenchmarks directly to realistic designs through inductive learning. Experimental results show that our approach can effectively infer various valid mapping patterns on both microbenchmarks and realistic designs. Furthermore, the proposed framework is exploited to improve the accuracy of delay estimation in HLS.
Author Deng, Chenhui
Ustun, Ecenur
Li, Zhijing
Zhang, Zhiru
Pal, Debjit
Author_xml – sequence: 1
  givenname: Ecenur
  surname: Ustun
  fullname: Ustun, Ecenur
  email: eu49@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University,Ithaca,NY
– sequence: 2
  givenname: Chenhui
  surname: Deng
  fullname: Deng, Chenhui
  email: cd574@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University,Ithaca,NY
– sequence: 3
  givenname: Debjit
  surname: Pal
  fullname: Pal, Debjit
  email: debjit.pal@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University,Ithaca,NY
– sequence: 4
  givenname: Zhijing
  surname: Li
  fullname: Li, Zhijing
  email: zl679@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University,Ithaca,NY
– sequence: 5
  givenname: Zhiru
  surname: Zhang
  fullname: Zhang, Zhiru
  email: zhiruz@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University,Ithaca,NY
BookMark eNotjk1Lw0AURUdRsNasXbiZP5A6H-9lJstSbSsEW9Cuy2TyRgdrUiYR6b83qKtzuXAu95pdtF1LjN1KMZMS8F6DEFqomQaJBZozlpXGyqJAUFqBPmcTiWjzMcIVy_o-1gJAAJbWTlg19_4ruYH45kgjY9fyBzq4E98maqL_LUKX-HK7mvN19cJ3fWzf-Cq54zt_ptE9jBi-u_TR37DL4A49Zf-cst3y8XWxzqvN6mkxr3KnwAw5mPFp6QFNY6V3RAJrL40rg22cCdBYUxMGQB8UBCGdMqIG6dCBkIZIT9nd324kov0xxU-XTvtSYQGF0j83vE7E
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3400302.3415657
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665423243
1665423242
EISSN 1558-2434
EndPage 9
ExternalDocumentID 9256462
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1512937,1723715
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a247t-474159c457d81caee05bc17a9f8da7f4d87be5f45cf24f01a270b41a5a4017ee3
IEDL.DBID RIE
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671087100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-474159c457d81caee05bc17a9f8da7f4d87be5f45cf24f01a270b41a5a4017ee3
PageCount 9
ParticipantIDs ieee_primary_9256462
PublicationCentury 2000
PublicationDate 2020-Nov.-2
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-2
  day: 02
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2020
Publisher Association on Computer Machinery
Publisher_xml – name: Association on Computer Machinery
SSID ssib044045988
ssj0020286
Score 2.4480495
Snippet Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adders
arithmetic-intensive designs
Computer architecture
datapath patterns
delay estimation
DSP blocks
field programmable gate arrays
FPGA HLS
GNN models
graph neural networks
graph theory
high level synthesis
inductive learning
learning (artificial intelligence)
modern heterogeneous FPGA architectures
neural nets
operation delay prediction
operation mapping patterns
Optimization
resource usage
Task analysis
Title Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks
URI https://ieeexplore.ieee.org/document/9256462
WOSCitedRecordID wos000671087100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSkMxEA21uNCNj1asL7Jwadqb3KRJlkVtuyi1oEJ3JY-5IJS29CH49ybptSq4cZUQCIRkkpOTzJxB6NaF_WO9dCTn7YxwpRkxhgJhhTIBUJXPpUvJJuRwqMZjPaqgu10sDAAk5zNoxmr6y_dzt4lPZS0d8JnHA3dPSrmN1fqynShzJ5L0Vkm2Am62SykfykUr59GcWTOPhEX8zqWSoKR79L9BHKP6d0weHu3Q5gRVYHaKDn_ICdbQoOPcJko_4KcFbFcWP8DUfISO8T8mNYRLKu6Oeh3cHzzj5DCAe1G0GkeZDjMNRfILX9XRa_fx5b5PymwJxDAu14THu4F2XEivqDMAmbCOSqML5Y0suFfSgii4cAXjRUYNk5nl1AgTKJYEyM9QdTafwTnC2nrqvTfcgQ30xCoN2lmTex16eQUNVIvzMllsBTEm5ZRc_N18iQ5YJKnxLZZdoep6uYFrtO_e12-r5U1axU_zeZ0c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FBfXioxXf5uDRbZts0iTHorYV11qwQm8lj1kQSlv6EPz3JulaFbx4SggEQjLJly-Z-Qaha-v3j3HCJilr1BMmFU20JpDQXGoPqNKlwsZkE6LblYOB6pXQzToWBgCi8xlUQzX-5buJXYanspry-MzCgbvJGaNkFa31ZT1B6I5H8a2CbnnkbBRiPoTxWsqCQdNqGigL_51NJYJJa-9_w9hHle-oPNxb480BKsH4EO3-EBQso6xp7TKIP-DnKazWFt_BSH_4juFHJjb4aypu9dpN3MlecHQZwO0gW42DUIce-SJ6hs8r6LV137_tJEW-hERTJhYJC7cDZRkXThKrAercWCK0yqXTImdOCgM8Z9zmlOV1oqmoG0Y0155kCYD0CG2MJ2M4RlgZR5xzmlkwnqAYqUBZo1OnfC8n4QSVw7wMpytJjGExJad_N1-h7U7_KRtmD93HM7RDA2UNL7P0HG0sZku4QFv2ffE2n13GFf0EUEagYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Accurate+Operation+Delay+Prediction+for+FPGA+HLS+Using+Graph+Neural+Networks&rft.au=Ustun%2C+Ecenur&rft.au=Deng%2C+Chenhui&rft.au=Pal%2C+Debjit&rft.au=Li%2C+Zhijing&rft.date=2020-11-02&rft.pub=Association+on+Computer+Machinery&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3400302.3415657&rft.externalDocID=9256462