A Systematic Framework for Sentiment Identification by Modeling User Social Effects

Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing alg...

Full description

Saved in:
Bibliographic Details
Published in:2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) Vol. 2; pp. 172 - 179
Main Authors: Zhang, Kunpeng, Yang, Yi, Sun, Aaron, Liu, Hengchang
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing algorithms by mining textual information in social media. However, none of them collectively consider the relationships among heterogeneous social entities. Since users interact with social brands in social platforms, their opinions on specific topics are inevitably dependent on many social effects such as user preference on topics, peer influence, user profile information, etc. In this paper, we present a systematic framework to identify sentiments by incorporating user social effects besides textual information. We apply distributed item-based collaborative filtering technique to estimate user preference. Our experiments, conducted on large datasets from current major social platforms, such as Facebook, Twitter, Amazon.com, and Flyertalk.com, demonstrate that incorporating those user social effects can significantly improve sentiment identification accuracy.
AbstractList Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing algorithms by mining textual information in social media. However, none of them collectively consider the relationships among heterogeneous social entities. Since users interact with social brands in social platforms, their opinions on specific topics are inevitably dependent on many social effects such as user preference on topics, peer influence, user profile information, etc. In this paper, we present a systematic framework to identify sentiments by incorporating user social effects besides textual information. We apply distributed item-based collaborative filtering technique to estimate user preference. Our experiments, conducted on large datasets from current major social platforms, such as Facebook, Twitter, Amazon.com, and Flyertalk.com, demonstrate that incorporating those user social effects can significantly improve sentiment identification accuracy.
Author Zhang, Kunpeng
Liu, Hengchang
Sun, Aaron
Yang, Yi
Author_xml – sequence: 1
  givenname: Kunpeng
  surname: Zhang
  fullname: Zhang, Kunpeng
  email: kzhang6@uic.edu
  organization: Dept. of Inf. & Decision Sci., Univ. of Illinois at Chicago, Chicago, IL, USA
– sequence: 2
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  email: yiyang@u.northwestern.edu
  organization: Northwestern Univ., Evanston, IL, USA
– sequence: 3
  givenname: Aaron
  surname: Sun
  fullname: Sun, Aaron
  organization: Samsung Res. America, San Jose, CA, USA
– sequence: 4
  givenname: Hengchang
  surname: Liu
  fullname: Liu, Hengchang
  email: hcliu@ustc.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Suzhou, China
BookMark eNotjM1KxDAYRSMoqGO3btzkBVqT5qfJsgwzWhhx0RlcDl_SLxLtj7QF6dtb0c09Z3G4t-SyH3ok5J6zjHNmH9-qtCqPWc64zKy6IIktDJeFtZJLYa5JMk0fjDGutTCFvCF1SetlmrGDOXq6H6HD72H8pGEYaY39HLt1aNX8aoh-rYaeuoW-DA22sX-npwnXcvARWroLAf083ZGrAO2EyT835LTfHbfP6eH1qdqWhxRyqeY0BM6NwAAMDBaCK22DsQIgaNZwBx6c8M4CusCUUwEVY0Z6LbRAVTguNuTh7zci4vlrjB2My1nbvNB5Ln4AoRJRMw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2014.95
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479941438
1479941433
EndPage 179
ExternalDocumentID 6927622
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a245t-ff1183efa0a8e731569f893aaf60d1bacab3cb9aebf05b5fe50084c6363e57b13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365543800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:13:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a245t-ff1183efa0a8e731569f893aaf60d1bacab3cb9aebf05b5fe50084c6363e57b13
PageCount 8
ParticipantIDs ieee_primary_6927622
PublicationCentury 2000
PublicationDate 2014-Aug.
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-Aug.
PublicationDecade 2010
PublicationTitle 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)
PublicationTitleAbbrev WI-IAT
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001663874
ssj0001663873
ssj0001651103
Score 1.5527226
Snippet Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests....
SourceID ieee
SourceType Publisher
StartPage 172
SubjectTerms Collaboration
collaborative filtering
Educational institutions
Facebook
Media
Message systems
Motion pictures
peer influence
Sentiment
social effects
Twitter
Title A Systematic Framework for Sentiment Identification by Modeling User Social Effects
URI https://ieeexplore.ieee.org/document/6927622
Volume 2
WOSCitedRecordID wos000365543800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NBTH1r6JoceG103yWZzlFKpFxFU6k2SOIFetPgo9N93srtqKb30lixsWDLJzmQy3_cBPJrEymTeUVwazLikNnfk53liyfuQe7GpDoXYhB4M8unUDGvwtMfCIGJRfIat2Czu8udLv42psnZmUtq79MM90lqXWK1DPiWj0KG6USz7tLL0776seBs7iWm_9Xm_O47VXbIV5SV-qKsUzqV3-r_POoPmAaXHhnv_cw41XFzA6U6mgVW7tgGjLhvt-ZpZb1eNxShcZaNYLBSHZyViN1QpPOa-WJRJi2B1NlnH4YrkOivZjtdNmPRexs-vvNJS4DaVasNDoJOEwGATm6MWdGozgUIVa0NGpnLWWye8MxZdSJRTAVVk2veZyAQq7TriEuqL5QKvgAkUShgl0OdGeqUtWZveyoNOfQg2vYZGnKPZR0mXMaum5-bvx7dwEi1Q1tTdQX2z2uI9HPvPzft69VDY-Bt_qKWU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImugJFYy_7cGjhW1tt_VIjAQiEhIgciNteU28gIFh4n_v6zbAGC_e2iVrlr527_X1fd9HyIMKtAjmoWRCQcwEtplBP88Cjd4H3YuOEpeLTSSDQTqdqmGFPO6wMACQF59B0zfzu_z50m58qqwVqwj3Lv5wD6QQUVigtfYZlRiDh_JOsejj2kp-90XJ3BgGqvXWY7322Nd3iaYXmPihr5K7l07tfx92Qhp7nB4d7jzQKanA4ozUtkINtNy3dTJq09GOsZl2tvVYFANWOvLlQn54WmB2XZnEo-aLeqE0D1enk7UfLk-v04LveN0gk87z-KnLSjUFpiMhM-YcniU4OB3oFBKO5zblMFjR2sVoLKOtNtwapcG4QBrpQHqufRvzmINMTMjPSXWxXMAFoRy45EpysKkSViYa7Y1vpS6JrHM6uiR1P0ezj4IwY1ZOz9Xfj-_JUXf82p_1e4OXa3LsrVFU2N2QarbawC05tJ_Z-3p1l9v7G0tzqNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE%2FWIC%2FACM+International+Joint+Conferences+on+Web+Intelligence+%28WI%29+and+Intelligent+Agent+Technologies+%28IAT%29&rft.atitle=A+Systematic+Framework+for+Sentiment+Identification+by+Modeling+User+Social+Effects&rft.au=Zhang%2C+Kunpeng&rft.au=Yang%2C+Yi&rft.au=Sun%2C+Aaron&rft.au=Liu%2C+Hengchang&rft.date=2014-08-01&rft.pub=IEEE&rft.volume=2&rft.spage=172&rft.epage=179&rft_id=info:doi/10.1109%2FWI-IAT.2014.95&rft.externalDocID=6927622