A Systematic Framework for Sentiment Identification by Modeling User Social Effects
Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing alg...
Saved in:
| Published in: | 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) Vol. 2; pp. 172 - 179 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.08.2014
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing algorithms by mining textual information in social media. However, none of them collectively consider the relationships among heterogeneous social entities. Since users interact with social brands in social platforms, their opinions on specific topics are inevitably dependent on many social effects such as user preference on topics, peer influence, user profile information, etc. In this paper, we present a systematic framework to identify sentiments by incorporating user social effects besides textual information. We apply distributed item-based collaborative filtering technique to estimate user preference. Our experiments, conducted on large datasets from current major social platforms, such as Facebook, Twitter, Amazon.com, and Flyertalk.com, demonstrate that incorporating those user social effects can significantly improve sentiment identification accuracy. |
|---|---|
| AbstractList | Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests. Identifying the sentiments of these social media data can help users make informed decisions. Existing research mainly focus on developing algorithms by mining textual information in social media. However, none of them collectively consider the relationships among heterogeneous social entities. Since users interact with social brands in social platforms, their opinions on specific topics are inevitably dependent on many social effects such as user preference on topics, peer influence, user profile information, etc. In this paper, we present a systematic framework to identify sentiments by incorporating user social effects besides textual information. We apply distributed item-based collaborative filtering technique to estimate user preference. Our experiments, conducted on large datasets from current major social platforms, such as Facebook, Twitter, Amazon.com, and Flyertalk.com, demonstrate that incorporating those user social effects can significantly improve sentiment identification accuracy. |
| Author | Zhang, Kunpeng Liu, Hengchang Sun, Aaron Yang, Yi |
| Author_xml | – sequence: 1 givenname: Kunpeng surname: Zhang fullname: Zhang, Kunpeng email: kzhang6@uic.edu organization: Dept. of Inf. & Decision Sci., Univ. of Illinois at Chicago, Chicago, IL, USA – sequence: 2 givenname: Yi surname: Yang fullname: Yang, Yi email: yiyang@u.northwestern.edu organization: Northwestern Univ., Evanston, IL, USA – sequence: 3 givenname: Aaron surname: Sun fullname: Sun, Aaron organization: Samsung Res. America, San Jose, CA, USA – sequence: 4 givenname: Hengchang surname: Liu fullname: Liu, Hengchang email: hcliu@ustc.edu.cn organization: Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Suzhou, China |
| BookMark | eNotjM1KxDAYRSMoqGO3btzkBVqT5qfJsgwzWhhx0RlcDl_SLxLtj7QF6dtb0c09Z3G4t-SyH3ok5J6zjHNmH9-qtCqPWc64zKy6IIktDJeFtZJLYa5JMk0fjDGutTCFvCF1SetlmrGDOXq6H6HD72H8pGEYaY39HLt1aNX8aoh-rYaeuoW-DA22sX-npwnXcvARWroLAf083ZGrAO2EyT835LTfHbfP6eH1qdqWhxRyqeY0BM6NwAAMDBaCK22DsQIgaNZwBx6c8M4CusCUUwEVY0Z6LbRAVTguNuTh7zci4vlrjB2My1nbvNB5Ln4AoRJRMw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WI-IAT.2014.95 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781479941438 1479941433 |
| EndPage | 179 |
| ExternalDocumentID | 6927622 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a245t-ff1183efa0a8e731569f893aaf60d1bacab3cb9aebf05b5fe50084c6363e57b13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365543800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:13:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a245t-ff1183efa0a8e731569f893aaf60d1bacab3cb9aebf05b5fe50084c6363e57b13 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6927622 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Aug. |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) |
| PublicationTitleAbbrev | WI-IAT |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001663874 ssj0001663873 ssj0001651103 |
| Score | 1.5527226 |
| Snippet | Social media is becoming a major and popular technological platform that allows users to express personal opinions toward the subjects with shared interests.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 172 |
| SubjectTerms | Collaboration collaborative filtering Educational institutions Media Message systems Motion pictures peer influence Sentiment social effects |
| Title | A Systematic Framework for Sentiment Identification by Modeling User Social Effects |
| URI | https://ieeexplore.ieee.org/document/6927622 |
| Volume | 2 |
| WOSCitedRecordID | wos000365543800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NBTH1r6JoceG103yWZzlFKpFxFU6k2SOIFetPgo9N93srtqKb30lixsWDLJzmQy3_cBPJrEymTeUVwazLikNnfk53liyfuQe7GpDoXYhB4M8unUDGvwtMfCIGJRfIat2Czu8udLv42psnZmUtq79MM90lqXWK1DPiWj0KG6USz7tLL0776seBs7iWm_9Xm_O47VXbIV5SV-qKsUzqV3-r_POoPmAaXHhnv_cw41XFzA6U6mgVW7tgGjLhvt-ZpZb1eNxShcZaNYLBSHZyViN1QpPOa-WJRJi2B1NlnH4YrkOivZjtdNmPRexs-vvNJS4DaVasNDoJOEwGATm6MWdGozgUIVa0NGpnLWWye8MxZdSJRTAVVk2veZyAQq7TriEuqL5QKvgAkUShgl0OdGeqUtWZveyoNOfQg2vYZGnKPZR0mXMaum5-bvx7dwEi1Q1tTdQX2z2uI9HPvPzft69VDY-Bt_qKWU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImugJFYy_7cGjhW1tt_VIjAQiEhIgciNteU28gIFh4n_v6zbAGC_e2iVrlr527_X1fd9HyIMKtAjmoWRCQcwEtplBP88Cjd4H3YuOEpeLTSSDQTqdqmGFPO6wMACQF59B0zfzu_z50m58qqwVqwj3Lv5wD6QQUVigtfYZlRiDh_JOsejj2kp-90XJ3BgGqvXWY7322Nd3iaYXmPihr5K7l07tfx92Qhp7nB4d7jzQKanA4ozUtkINtNy3dTJq09GOsZl2tvVYFANWOvLlQn54WmB2XZnEo-aLeqE0D1enk7UfLk-v04LveN0gk87z-KnLSjUFpiMhM-YcniU4OB3oFBKO5zblMFjR2sVoLKOtNtwapcG4QBrpQHqufRvzmINMTMjPSXWxXMAFoRy45EpysKkSViYa7Y1vpS6JrHM6uiR1P0ezj4IwY1ZOz9Xfj-_JUXf82p_1e4OXa3LsrVFU2N2QarbawC05tJ_Z-3p1l9v7G0tzqNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE%2FWIC%2FACM+International+Joint+Conferences+on+Web+Intelligence+%28WI%29+and+Intelligent+Agent+Technologies+%28IAT%29&rft.atitle=A+Systematic+Framework+for+Sentiment+Identification+by+Modeling+User+Social+Effects&rft.au=Zhang%2C+Kunpeng&rft.au=Yang%2C+Yi&rft.au=Sun%2C+Aaron&rft.au=Liu%2C+Hengchang&rft.date=2014-08-01&rft.pub=IEEE&rft.volume=2&rft.spage=172&rft.epage=179&rft_id=info:doi/10.1109%2FWI-IAT.2014.95&rft.externalDocID=6927622 |