Towards Provenance-Based Anomaly Detection in MapReduce

MapReduce enables parallel and distributed processing of vast amount of data on a cluster of machines. However, such computing paradigm is subject to threats posed by malicious and cheating nodes or compromised user submitted code that could tamper data and computation since users maintain little co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing s. 647 - 656
Hlavní autoři: Cong Liao, Squicciarini, Anna
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:MapReduce enables parallel and distributed processing of vast amount of data on a cluster of machines. However, such computing paradigm is subject to threats posed by malicious and cheating nodes or compromised user submitted code that could tamper data and computation since users maintain little control as the computation is carried out in a distributed fashion. In this paper, we focus on the analysis and detection of anomalies during the process of MapReduce computation. Accordingly, we develop a computational provenance system that captures provenance data related to MapReduce computation within the MapReduce framework in Hadoop. In particular, we identify a set of invariants against aggregated provenance information, which are later analyzed to uncover anomalies indicating possible tampering of data and computation. We conduct a series of experiments to show the efficiency and effectiveness of our proposed provenance system.
DOI:10.1109/CCGrid.2015.16