Hands-On Java Deep Learning for Computer Vision Implement Machine Learning and Neural Network Methodologies to Perform Computer Vision-Related Tasks

This book will take you through the process of efficiently training deep neural networks in Java for Computer Vision-related tasks. You will build real-world applications ranging from simple Java handwritten digit recognition models to real-time autonomous car driving systems and face recognition mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Ramo, Klevis
Médium: E-kniha
Jazyk:angličtina
Vydáno: Birmingham Packt Publishing, Limited 2019
Packt Publishing Limited
Packt Publishing
Vydání:1
Témata:
ISBN:1789613965, 9781789613964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This book will take you through the process of efficiently training deep neural networks in Java for Computer Vision-related tasks. You will build real-world applications ranging from simple Java handwritten digit recognition models to real-time autonomous car driving systems and face recognition models using the popular Java-based libraries.
AbstractList Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The course is designed to familiarise you with neural networks, enabling you to train them efficiently, customise existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time.
This book will take you through the process of efficiently training deep neural networks in Java for Computer Vision-related tasks. You will build real-world applications ranging from simple Java handwritten digit recognition models to real-time autonomous car driving systems and face recognition models using the popular Java-based libraries.
Author Ramo, Klevis
Author_xml – sequence: 1
  fullname: Ramo, Klevis
BookMark eNplj81PwzAMxYP4EGzsyL03xKEsTZomOUI3GGjSLmjXym3dMdYlI-k28d8TMaQJ4Yv9k5-fnnvkzFiDhNwk9J6GGmqpEsWVECzh6oT0jnAaQCqdJVxn4iIAVZomnGp1SQbef4RrTqXUXF2R4QRM7eOZiV5hB9EIcRNNEZxZmkXUWBfldr3Zduii-dIvrbkm5w20Hge_vU_mT-O3fBJPZ88v-cM0BpYKxeK6EaCbGoWmiKDLrEIFjdSQUmiqkrOUcS01A16FJRc8FWVZs1JyyCopGO-Tu4Mx-BXu_bttO1_sWiytXfniz_NH7R7aELXGhdt-haFYg6v-aW8P2o2zn1v0XfFjWaHpHLTF-DEXMtE0xPsG_q9lsg
ContentType eBook
DEWEY 005.133
DOI 10.0000/9781838552138
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1838552138
9781838552138
Edition 1
ExternalDocumentID 9781838552138
EBC5719042
GroupedDBID -VX
38.
AABBV
AAFKH
AAKGN
AANYM
AAZEP
AAZGR
ABIWA
ABMRC
ABRSK
ABWNX
ACBYE
ACCPI
ACIWJ
ACMFT
ACXXF
ADBND
AECLD
AEDWI
AEHEP
AEIUR
AEOCW
AFQEX
AHWGJ
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
BPBUR
BSWCA
CMZ
CZZ
DUGUG
DYXOI
E2F
EBFEC
EBSCA
ESHEC
IHRAH
K-E
KT4
L7C
OHILO
OODEK
PASLL
QD8
TD3
UE6
-VQ
5O.
6XM
ACNAM
AK3
DRU
ECOWB
O7H
XI1
YSPEL
ID FETCH-LOGICAL-a24582-df5a9fde590eea9b6ce8af79a40afcb324239792a3c9b635345bbd2b73a6c7523
ISBN 1789613965
9781789613964
IngestDate Fri Nov 08 05:02:24 EST 2024
Fri Nov 21 19:14:02 EST 2025
Wed Dec 10 12:28:35 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA76.73.J38 R366 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a24582-df5a9fde590eea9b6ce8af79a40afcb324239792a3c9b635345bbd2b73a6c7523
OCLC 1089013098
PQID EBC5719042
PageCount 253
ParticipantIDs askewsholts_vlebooks_9781838552138
walterdegruyter_marc_9781838552138
proquest_ebookcentral_EBC5719042
PublicationCentury 2000
PublicationDate 2019
[2019]
2019-02-21
PublicationDateYYYYMMDD 2019-01-01
2019-02-21
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2019
Publisher Packt Publishing, Limited
Packt Publishing Limited
Packt Publishing
Publisher_xml – name: Packt Publishing, Limited
– name: Packt Publishing Limited
– name: Packt Publishing
RestrictionsOnAccess restricted access
SSID ssj0003077938
Score 2.0944393
Snippet This book will take you through the process of efficiently training deep neural networks in Java for Computer Vision-related tasks. You will build real-world...
Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to...
SourceID askewsholts
walterdegruyter
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Application program interfaces (Computer software)
COM004000 COMPUTERS / Intelligence (AI) & Semantics
COM016000 COMPUTERS / Computer Vision & Pattern Recognition
Computer vision
COMPUTERS / Image Processing
Java (Computer program language)
Machine learning
Neural networks (Computer science)
Subtitle Implement Machine Learning and Neural Network Methodologies to Perform Computer Vision-Related Tasks
TableOfContents The power of 1 x 1 convolutions and the inception network -- Applying transfer learning -- Neural networks -- Building an animal image classification - using transfer learning and VGG-16 architecture -- Summary -- Chapter 4: Real-Time Object Detection -- Resolving object localization -- Labeling and defining data for localization -- Object localization prediction layer -- Landmark detection -- Object detection with the sliding window solution -- Disadvantages of sliding windows -- Convolutional sliding window -- Detecting objects with the YOLO algorithm -- Max suppression and anchor boxes -- Max suppression -- Anchor boxes -- Building a real-time video, car, and pedestrian detection application -- Architecture of the application -- YOLO V2-optimized architecture -- Coding the application -- Summary -- Chapter 5: Creating Art with Neural Style Transfer -- What are convolution network layers learning? -- Neural style transfer -- Minimizing the cost function -- Applying content cost function -- Applying style cost function -- How to capture the style -- Style cost function -- Building a neural network that produces art -- Summary -- Chapter 6: Face Recognition -- Problems in face detection -- Face verification versus face recognition -- Face verification -- Face recognition -- One-shot learning problem -- Similarity function -- Differentiating inputs with Siamese networks -- Learning with Siamese networks -- Exploring triplet loss -- Choosing the triplets -- Binary classification -- Binary classification cost function -- Building a face recognition Java application -- Summary -- Other Books You May Enjoy -- Index
Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributor -- Table of Contents -- Preface -- Chapter 1: Introduction to Computer Vision and Training Neural Networks -- The computer vision state -- The importance of data in deep learning algorithms -- Exploring neural networks -- Building a single neuron -- Building a single neuron with multiple outputs -- Building a neural network -- How does a neural network learn? -- Learning neural network weights -- Updating the neural network weights -- Advantages of deep learning -- Organizing data and applications -- Organizing your data -- Bias and variance -- Computational model efficiency -- Effective training techniques -- Initializing the weights -- Activation functions -- Optimizing algorithms -- Configuring the training parameters of the neural network -- Representing images and outputs -- Multiclass classification -- Building a handwritten digit recognizer -- Testing the performance of the neural network -- Summary -- Chapter 2: Convolutional Neural Network Architectures -- Understanding edge detection -- What is edge detection? -- Vertical edge detection -- Horizontal edge detection -- Edge detection intuition -- Building a Java edge detection application -- Types of filters -- Basic coding -- Convolution on RGB images -- Working with convolutional layers' parameters -- Padding -- Stride -- Pooling layers -- Max pooling -- Average pooling -- Pooling on RGB images -- Pooling characteristics -- Building and training a Convolution Neural Network -- Why convolution? -- Improving the handwritten digit recognition application -- Summary -- Chapter 3: Transfer Learning and Deep CNN Architectures -- Working with classical networks -- LeNet-5 -- AlexNet -- VGG-16 -- Using residual networks for image recognition -- Deep network performance -- ResNet-50
Hands-On Java Deep Learning for Computer Vision: Implement machine learning and neural network methodologies to perform computer vision-related tasks
Title Hands-On Java Deep Learning for Computer Vision
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5719042
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781838552138&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3NT9swFMCtATvAgY0BGrBNTxO3KqI4SR1zBDFNm4Q4VBO3yLEdhIBQNaGDP4T_l-evFucEBy5RGyevqn-J_fz8PgjZH0l2WHN8AYcVq5IsNU4ANNVJherpqKBcSD20xSbY2VlxccHPfcXQ1pYTYE1TPDzwybuixnMI24TOvgH3XCiewM8IHY-IHY89jXj-NZT5aVSbIM0_YiYGSutJqAnhfCWlL-AwcPHkxhZwdevdxwe31qlSL-4wBnWT7BIRNs5V3FebtqOlSwwxcVEHfcmJDZBBTbYT7XVkVzChTDShC7vCuZDX3QtbWLTuxHGgyHHid4lZ-qOwmQOd40V8XS-xddS-RFbMHrBZPv8dZ3MrGY5AOIAULjmqkXsQ3bVG1vCP4GyAM0XXRouE9f_W3UDpy-n9Yxe2t63WMP5MVrQJJdkgH3TzhXwKBTTAj6eb5CkgA4MMDDIIAAB7FkLHguvYI5gDAw9scT2KAgcMPDCIgEF3Bx5YX24ABhbYFvn363R88jvxdTISQc22Z6LqXPBa6ZwPtRa8GkldiJpxkQ1FLSurM3PGqUglNqZ5muVVpWjFUoHvak7TbbLc3DX6KwHBDpXginGFS38pRwXq80rIOjWJ0ZTmO-Tnix4vZzd2T78tIyw7BAKI0rZ7R-Py9PgkZ6iCZhTl9ACVJndLLGf3NT-2R1YXj-83stxN7_V38lHOuqt2-sM-Ts-danK8
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Hands-on+Java+deep+learning+for+computer+vision%3A+implement+machine+learning+and+neural+network+methodologies+to+perform+computer+vision-related+tasks&rft.date=2019-02-21&rft.pub=Packt+Publishing&rft.isbn=9781838552138&rft_id=info:doi/10.0000%2F9781838552138&rft.externalDocID=9781838552138
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97818385%2F9781838552138.jpg