CoPhIR Image Collection under the Microscope
The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 2009 Second International Workshop on Similarity Search and Applications S. 47 - 54 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington, DC, USA
IEEE Computer Society
29.08.2009
IEEE |
| Schriftenreihe: | ACM Conferences |
| Schlagworte: | |
| ISBN: | 9780769537658, 0769537650 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat the descriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million CoPhIR images. Finally, we suggest, explore and evaluate two approaches to improve the accuracy: 1) applying logarithms in order to weaken influence of a single descriptor contribution if it deviates from the rest, and 2) the possibility of categorization of the dataset and identifying visual characteristics important for individual categories. |
|---|---|
| AbstractList | The content-based photo image retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat the descriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million CoPhIR images. Finally, we suggest, explore and evaluate two approaches to improve the accuracy: 1) applying logarithms in order to weaken influence of a single descriptor contribution if it deviates from the rest, and 2) the possibility of categorization of the dataset and identifying visual characteristics important for individual categories. |
| Author | Kohoutkova, Petra Batko, Michal Novak, David |
| Author_xml | – sequence: 1 givenname: Michal surname: Batko fullname: Batko, Michal – sequence: 2 givenname: Petra surname: Kohoutkova fullname: Kohoutkova, Petra – sequence: 3 givenname: David surname: Novak fullname: Novak, David |
| BookMark | eNqNkLFOwzAURS1BJWjJyMSSiakNz85zHI9VRCFSERWF2XKcFxpI4yopA39PQvkApjucqyPdO2XnrW-JsWsOEeeg77b5drmJBICOhDxjgVYpqETLWCUynbDpSDSgRnHBgr7_AADOBaBUl2ye-c0ufwnzvX2nMPNNQ-5Y-zb8akvqwuOOwqfadb53_kBXbFLZpqfgL2fsbXX_mj0u1s8PebZcL6zA-LjgFjgk4GKruUDpEIpEDAicxBK0QovKSSCnKHWYCqfSUqLAgiQUupLxjN2cvDURmUNX7233baRQfBg10NsTtW5vCu8_e8PBjE-Y3yfMuNeIUTP_V9EUXU1V_AOevFug |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SISAP.2009.25 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| Editor | Skopal, Tomas Zezula, Pavel |
| Editor_xml | – sequence: 1 givenname: Tomas surname: Skopal fullname: Skopal, Tomas – sequence: 2 givenname: Pavel surname: Zezula fullname: Zezula, Pavel |
| EndPage | 54 |
| ExternalDocumentID | 5271953 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IERZE OCL RIE RIL AAWTH LHSKQ |
| ID | FETCH-LOGICAL-a243t-1a01060c3a91245c40b62a240c54d0974a47c50ec7e8c482c78d5424be50b9f53 |
| IEDL.DBID | RIE |
| ISBN | 9780769537658 0769537650 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282087600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:28 EDT 2025 Wed Jan 31 06:42:28 EST 2024 Wed Jan 31 06:50:09 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | metric space MPEG-7 dataset analysis CoPhIR dataset visual descriptors |
| LCCN | 2009904942 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a243t-1a01060c3a91245c40b62a240c54d0974a47c50ec7e8c482c78d5424be50b9f53 |
| PageCount | 8 |
| ParticipantIDs | acm_books_10_1109_SISAP_2009_25 acm_books_10_1109_SISAP_2009_25_brief ieee_primary_5271953 |
| PublicationCentury | 2000 |
| PublicationDate | 20090829 2009-Aug. |
| PublicationDateYYYYMMDD | 2009-08-29 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 20090829 day: 29 |
| PublicationDecade | 2000 |
| PublicationPlace | Washington, DC, USA |
| PublicationPlace_xml | – name: Washington, DC, USA |
| PublicationSeriesTitle | ACM Conferences |
| PublicationTitle | Proceedings of the 2009 Second International Workshop on Similarity Search and Applications |
| PublicationTitleAbbrev | SISAP |
| PublicationYear | 2009 |
| Publisher | IEEE Computer Society IEEE |
| Publisher_xml | – name: IEEE Computer Society – name: IEEE |
| SSID | ssj0001120457 |
| Score | 1.5186486 |
| Snippet | The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains... The content-based photo image retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains... |
| SourceID | ieee acm |
| SourceType | Publisher |
| StartPage | 47 |
| SubjectTerms | Computing methodologies -- Artificial intelligence -- Computer vision -- Computer vision problems Computing methodologies -- Computer graphics -- Image manipulation Computing methodologies -- Machine learning -- Learning paradigms -- Unsupervised learning -- Cluster analysis Content based retrieval CoPhIR dataset Data analysis dataset analysis Digital images Extraterrestrial measurements Image databases Image retrieval Information retrieval Information systems -- Information retrieval Information systems -- Information retrieval -- Evaluation of retrieval results Information systems -- Information systems applications -- Multimedia information systems -- Multimedia databases metric space Microscopy MPEG 7 Standard MPEG-7 Visual databases visual descriptors |
| Title | CoPhIR Image Collection under the Microscope |
| URI | https://ieeexplore.ieee.org/document/5271953 |
| WOSCitedRecordID | wos000282087600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH4DxIMnP8CIivagnpiUtaXd0RCJHCSLaMJtabsucgDMAH-_e7sFYmJivO3rsDxp9-79eJ4H4FZmThnJUeiWpwEPNQ_MgMvAMoc1DJHqyHizCTmZqNksimvQ3XFhnHN--Mw94KHv5acru8VSWU-EErs-dahLKUuu1r6e0kdhdVlm5hGKlIhK0ml3rvYam73pePoYl3KV6JJd13bxw1_Fh5fR0f9e7Bhae54eiXcR6ARqbnkKnYqKQO5JxTVC7Em1iZvQHa7ij_ErGS-KTwnxhQPPbSBIJ8tJ8UNIXnBKz_NVWvA-enobPgeVZ0KgQ842QV9jkkct01ERuYXl1AzC4ha1gqe0SB40l1ZQZ6VTlqvQSpUKHnLjBDVRJtgZNJarpTsHUuzHNB1Ixwx3XDGjXNa3zFIdMTS5Ym24KVBLMBlYJz6XoFHicUVvyygJRRvu_ngiMfncZW1oIqbJZymwkVRwXvx--RIOy5YOTuFdQWOTb10HDuzXZr7Or_2q-AYo3K6R |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFL0BNNGVDzCiIrNQV1TbzgzTLg2R0AikEUzYNZ3pNLIATAG_395pAzExMe76WjQnM729j3MOwJ1ItScFQ6FblljMjZklu0xYimqsYfAk9qUxmxDjsTeb-WEFOjsujNbaDJ_pRzw0vfxkpbZYKnvirsCuTxUOOGOuU7C19hUVB6XVRZGb-yhTwktRp925t1fZfJoEk-ewEKxEn-xqrBY_HFZMgOmf_O_VTqGxZ-qRcBeDzqCil-fQKskI5IGUbCNEn5TbuA6d3ir8CN5IsMg_JsSUDgy7gSChLCP5LyEZ4ZyeYaw04L3_Mu0NrNI1wYpdRjeWE2OaZysa-3ns5orZsuvmt2zFWWLn6UPMhOK2VkJ7inmuEl7Cmcuk5rb0U04voLZcLfUlkHxHJklXaCqZZh6Vnk4dRZUd-xRtrmgT2jlqEaYD68hkE7YfGVzR3dKPXN6E-z-eiGQ212kT6ohp9FlIbEQlnFe_X27D0WA6GkbDYPx6DcdFgwdn8m6gtsm2ugWH6mszX2e3ZoV8A3O7sdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2009+Second+International+Workshop+on+Similarity+Search+and+Applications&rft.atitle=CoPhIR+Image+Collection+under+the+Microscope&rft.au=Batko%2C+Michal&rft.au=Kohoutkova%2C+Petra&rft.au=Novak%2C+David&rft.series=ACM+Conferences&rft.date=2009-08-29&rft.pub=IEEE+Computer+Society&rft.isbn=9780769537658&rft.spage=47&rft.epage=54&rft_id=info:doi/10.1109%2FSISAP.2009.25 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769537658/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769537658/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769537658/sc.gif&client=summon&freeimage=true |

