Maximum Matching and Linear Programming in Fixed-Point Logic with Counting

We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science s. 173 - 182
Hlavní autori: Anderson, Matthew, Dawar, Anuj, Holm, Bjarki
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2013
Predmet:
ISBN:1479904139, 9781479904136
ISSN:1043-6871
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked whether the existence of perfect matchings in general graphs could be determined in the more powerful formalism of choiceless polynomial time with counting. Our result is established by noting that the ellipsoid method for solving linear programs of full dimension can be implemented in FPC. This allows us to prove that linear programs of full dimension can be optimised in FPC if the corresponding separation oracle problem can be defined in FPC. On the way to defining a suitable separation oracle for the maximum matching problem, we provide FPC formulas defining maximum flows and canonical minimum cuts in capacitated graphs.
AbstractList We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked whether the existence of perfect matchings in general graphs could be determined in the more powerful formalism of choiceless polynomial time with counting. Our result is established by noting that the ellipsoid method for solving linear programs of full dimension can be implemented in FPC. This allows us to prove that linear programs of full dimension can be optimised in FPC if the corresponding separation oracle problem can be defined in FPC. On the way to defining a suitable separation oracle for the maximum matching problem, we provide FPC formulas defining maximum flows and canonical minimum cuts in capacitated graphs.
Author Anderson, Matthew
Holm, Bjarki
Dawar, Anuj
Author_xml – sequence: 1
  givenname: Matthew
  surname: Anderson
  fullname: Anderson, Matthew
  email: Matthew.Anderson@cl.cam.ac.uk
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
– sequence: 2
  givenname: Anuj
  surname: Dawar
  fullname: Dawar, Anuj
  email: Anuj.Dawar@cl.cam.ac.uk
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
– sequence: 3
  givenname: Bjarki
  surname: Holm
  fullname: Holm, Bjarki
  email: Bjarki.Holm@cl.cam.ac.uk
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
BookMark eNotjE1Lw0AUABesYFO9efOyfyDxvd1NNnuUYLWSYkE9l-d-pCtmI2mK9d-r6GlgGCZjszQkz9glQoEI5rpdNU-FAJSFkCcsQ6WNAYXSzNgcQcm8qjWesWy_fwMAUSmYs4c1HWN_6PmaJruLqeOUHG9j8jTyzTh0I_X9r46JL-PRu3wzxDTxduii5Z9x2vFmOKTpJzlnp4He9_7inwv2srx9bu7z9vFu1dy0OQmFU-4ogCTp0FitgnGytrUVQEDorFReQXgthdHgtQEMAC4Er8tSkDRGGC8X7OrvG733248x9jR-batSY6mM_AYWNkzO
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2013.23
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 182
ExternalDocumentID 6571549
Genre orig-research
GroupedDBID --Z
23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-a241t-daf03a3d19c74f9d38c8c20a0a1dc34e40fb52970e7901f00dffe7552a39929e3
IEDL.DBID RIE
ISBN 1479904139
9781479904136
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326815000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-6871
IngestDate Wed Aug 27 04:17:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a241t-daf03a3d19c74f9d38c8c20a0a1dc34e40fb52970e7901f00dffe7552a39929e3
PageCount 10
ParticipantIDs ieee_primary_6571549
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev lics
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002640
ssj0001035133
Score 1.9082227
Snippet We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size...
SourceID ieee
SourceType Publisher
StartPage 173
SubjectTerms Ellipsoids
Encoding
fixed-point logic with counting
Linear programming
maximum flow
maximum matching
minimum cut
minimum odd cut
Optimization
Polynomials
Vectors
Vocabulary
Title Maximum Matching and Linear Programming in Fixed-Point Logic with Counting
URI https://ieeexplore.ieee.org/document/6571549
WOSCitedRecordID wos000326815000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG6AePCECsY9PXi00Okybc9EokYIiZpwI50uyRwYDA6Gn287M4AHL97aHpqmy9v63vcBcK-5VBEWHSWp4ohZJpFmWiDiPLXBPFbS4IpsQkyncj5XsxZ42NfCOOeq5DM3iM3qL9-uzCaGyoYpFxFRrA3aQqR1rdYhnhK_xOhBCgdF3yARUJQGr6Aq6hJB9gaprXZYT00_3WfEq-Hr8-gtZnzRQWQw-sW4Uimccfd_Sz0B_UPlHpztddIpaLniDHR31A2weck98DLR23y5WcJJEMUxCAV1YWFwTMPFjxPEnK1lHM4LOM63zqLZKi9KGKmZDYzBWzhqWCb64GP8-D56Qg2tAtJBXZfIao-ppjZRRjCvLJVGGoI11ok1lDmGfcZJOEEngrHgMbbeO8E50RHEVjl6DjrFqnAXAGaWZ8Fe8MEqMExLltlMZoYSyz3NDCGXoBe3ZvFZI2csml25-nv4GhyTmmwC4eQGdMr1xt2CI_Nd5l_ru-q4fwBNG6PQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4QTfSEisbdHjxa6HSZac9EAgqEREy4kU6XZA4MBgfDz7cdBvDgxVvbQ9N0eVvf-z4AnhQXMsCioyiWHDHDBFJMJYhYR403j6XQuCSbSEYjMZ3KcQ0872phrLVl8plthWb5l28WehVCZe2YJwFR7AAccsYI3lRr7SMq4VOM7uWwV_UVFgFFsfcLyrKuxEtfL7flFu2p6se7nHjZHvQ77yHni7YCh9EvzpVS5XQb_1vsKbjY1-7B8U4rnYGazc9BY0veAKu33ASvQ7XO5qs5HHphHMJQUOUGetfUX_0wQcjamofhLIfdbG0NGi-yvICBnFnDEL6FnYpn4gJ8dF8mnR6qiBWQ8gq7QEY5TBU1kdQJc9JQoYUmWGEVGU2ZZdilnPgztIk3FxzGxjmbcE5UgLGVll6Cer7I7RWAqeGptxictws0U4KlJhWppsRwR1NNyDVohq2ZfW6wM2bVrtz8PfwIjnuT4WA26I_ebsEJ2VBPIBzdgXqxXNl7cKS_i-xr-VAe_Q8IG6cX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+28th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Maximum+Matching+and+Linear+Programming+in+Fixed-Point+Logic+with+Counting&rft.au=Anderson%2C+Matthew&rft.au=Dawar%2C+Anuj&rft.au=Holm%2C+Bjarki&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904136&rft.issn=1043-6871&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1109%2FLICS.2013.23&rft.externalDocID=6571549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon