From Frame Properties to Hypersequent Rules in Modal Logics

We provide a general method for generating cutfree and/or analytic hypersequent Gentzen-type calculi for a variety of normal modal logics. The method applies to all modal logics characterized by Kripke frames, transitive Kripke frames, or symmetric Kripke frames satisfying some properties, given by...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science s. 408 - 417
Hlavný autor: Lahav, Ori
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2013
Predmet:
ISBN:1479904139, 9781479904136
ISSN:1043-6871
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We provide a general method for generating cutfree and/or analytic hypersequent Gentzen-type calculi for a variety of normal modal logics. The method applies to all modal logics characterized by Kripke frames, transitive Kripke frames, or symmetric Kripke frames satisfying some properties, given by first-order formulas of a certain simple form. This includes the logics KT, KD, S4, S5, K4D, K4.2, K4.3, KBD, KBT, and other modal logics, for some of which no Gentzen calculi was presented before. Cut-admissibility (or analyticity in the case of symmetric Kripke frames) is proved semantically in a uniform way for all constructed calculi. The decidability of each modal logic in this class immediately follows.
ISBN:1479904139
9781479904136
ISSN:1043-6871
DOI:10.1109/LICS.2013.47