Expressive Completeness for Metric Temporal Logic

Metric Temporal Logic (MTL) is a generalisation of Linear Temporal Logic in which the Until and Since modalities are annotated with intervals that express metric constraints. Hirshfeld and Rabinovich have shown that over the reals, firstorder logic with binary order relation <; and unary function...

Full description

Saved in:
Bibliographic Details
Published in:2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 349 - 357
Main Authors: Hunter, Paul, Ouaknine, Joel, Worrell, James
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2013
Subjects:
ISBN:1479904139, 9781479904136
ISSN:1043-6871
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metric Temporal Logic (MTL) is a generalisation of Linear Temporal Logic in which the Until and Since modalities are annotated with intervals that express metric constraints. Hirshfeld and Rabinovich have shown that over the reals, firstorder logic with binary order relation <; and unary function +1 is strictly more expressive than MTL with integer constants. Indeed they prove that no temporal logic whose modalities are definable by formulas of bounded quantifier depth can be expressively complete for FO(<;, +1). In this paper we show that if we allow unary functions +q, q ∈ Q, in first-order logic and correspondingly allow rational constants in MTL, then the two logics have the same expressive power. This gives the first generalisation of Kamp's theorem on the expressive completeness of LTL for FO(<;) to the quantitative setting. The proof of this result involves a generalisation of Gabbay's notion of separation to the metric setting.
AbstractList Metric Temporal Logic (MTL) is a generalisation of Linear Temporal Logic in which the Until and Since modalities are annotated with intervals that express metric constraints. Hirshfeld and Rabinovich have shown that over the reals, firstorder logic with binary order relation <; and unary function +1 is strictly more expressive than MTL with integer constants. Indeed they prove that no temporal logic whose modalities are definable by formulas of bounded quantifier depth can be expressively complete for FO(<;, +1). In this paper we show that if we allow unary functions +q, q ∈ Q, in first-order logic and correspondingly allow rational constants in MTL, then the two logics have the same expressive power. This gives the first generalisation of Kamp's theorem on the expressive completeness of LTL for FO(<;) to the quantitative setting. The proof of this result involves a generalisation of Gabbay's notion of separation to the metric setting.
Author Hunter, Paul
Worrell, James
Ouaknine, Joel
Author_xml – sequence: 1
  givenname: Paul
  surname: Hunter
  fullname: Hunter, Paul
  email: paul.hunter@cs.ox.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Oxford, Oxford, UK
– sequence: 2
  givenname: Joel
  surname: Ouaknine
  fullname: Ouaknine, Joel
  email: joel.ouaknine@cs.ox.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Oxford, Oxford, UK
– sequence: 3
  givenname: James
  surname: Worrell
  fullname: Worrell, James
  email: james.worrell@cs.ox.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Oxford, Oxford, UK
BookMark eNotjLtOwzAUQC1RJJrCxsbiH0i4N3b8GFFUoFIQQ9u5cpxrFJSXnAjB3xMJpnPOchK2GcaBGLtHyBDBPlaH8pjlgCKTeMUSlNpakCjshm0RpEiV0XjDknn-BIBcSdgy3H9Pkea5_SJejv3U0ULD2jyMkb_RElvPT9RPY3Qdr8aP1t-y6-C6me7-uWPn5_2pfE2r95dD-VSlLpe4pM6YWiqtAbG23lujgw3GK7GKNAqcRhFWqNDowubeNArAFb6pcyAFVuzYw9-3JaLLFNvexZ-LKjQWSotf7DlDig
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2013.41
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 357
ExternalDocumentID 6571567
Genre orig-research
GroupedDBID --Z
23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-a241t-a88b4677011b9cc987f9f8c6387f4860a713f60a6fd7592c8d600a5cdb20e6093
IEDL.DBID RIE
ISBN 1479904139
9781479904136
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326815000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-6871
IngestDate Wed Aug 27 04:17:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a241t-a88b4677011b9cc987f9f8c6387f4860a713f60a6fd7592c8d600a5cdb20e6093
PageCount 9
ParticipantIDs ieee_primary_6571567
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev lics
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002640
ssj0001035133
Score 2.056885
Snippet Metric Temporal Logic (MTL) is a generalisation of Linear Temporal Logic in which the Until and Since modalities are annotated with intervals that express...
SourceID ieee
SourceType Publisher
StartPage 349
SubjectTerms Computer science
Expressive Completeness
First-Order Logic
Linear Temporal Logic
Metric Temporal Logic
Semantics
Silicon
Syntactics
Time-domain analysis
Timing
Title Expressive Completeness for Metric Temporal Logic
URI https://ieeexplore.ieee.org/document/6571567
WOSCitedRecordID wos000326815000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tCJtlD1LQ8da0jixI8ZgVqJIqRSiQ3Zji1VQlDRgPrze04CdOjSya_FTnQv-777AB6VT2TsUka9jARNjbZUplpQz1PBTZZ7Y0qg8FhMJnI-V9MGPB2wMM65MvnM9UK3fMvP13Ybrsr6PBMYbogmNIXgFVbreJ8SnsTYUQujoa8rETDKMSooQV0CdS9qbbWv9VSP-SEjXvXHL4O3kPHFeoEk_hfjSmlwRu3_bfUMukfkHpkebNI5NNzqAtp76gZSS3IH4uF3lQG7cySsLoPvjGOCPix5DSxblsyqqlVLEviYbRfeR8PZ4JnW7AlUo1UuqJbSoBYUKMBGWauk8MpLi_ImfGCe0hieemy4z0WmEitz9H10ZnOTRI5Hil1Ca7VeuSsggRvD29yryAoMH5nkxiVZYpPUxEwbew2d8AUWn1WBjEV9-Ju_p2_hNKk4JWgU30Gr2GzdPZzYXfHxtXko_-oP_d6bHw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEIAniCZ6QgXj2z14dKHPfZwJBGIhJGLCjXS3u4kJAYOF-POdbQt48OKp3TZNum3mtTszH8CztIHwTRRSKzxOI5VqKqKUU8sizlScWaWKQuGEj8diNpOTGrzsa2GMMUXymWm702IvP1vpjVsq67CYY7jBj-DYkbOqaq3DiorbFAsPehhNfdWLIKQM44KirIuj9sVH5a7bUzVm-5x42UmG3TeX8xW2HSb-F3OlMDn9xv9e9hxah9o9MtlbpQuomeUlNHbwBlLJchP83neZA7s1xN1dOO8ZxwS9WDJynC1NpmXfqgVxRGbdgvd-b9od0IqfQFO0yzlNhVCoBzmKsJJaS8GttEKjxHHr2FMpBqgWD8xmPJaBFhl6P2msMxV4hnkyvIL6crU010AcHcPqzEpPcwwgQ8GUCeJAB5Hyw1TpG2i6LzD_LFtkzKvJ3_59-QlOB9NRMk-G49c7OAtKwgT1_Huo5-uNeYATvc0_vtaPxR_-AU2Qnmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+28th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Expressive+Completeness+for+Metric+Temporal+Logic&rft.au=Hunter%2C+Paul&rft.au=Ouaknine%2C+Joel&rft.au=Worrell%2C+James&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904136&rft.issn=1043-6871&rft.spage=349&rft.epage=357&rft_id=info:doi/10.1109%2FLICS.2013.41&rft.externalDocID=6571567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon