Machine-Learning-Guided Selectively Unsound Static Analysis
We present a machine-learning-based technique for selectively applying unsoundness in static analysis. Existing bug-finding static analyzers are unsound in order to be precise and scalable in practice. However, they are uniformly unsound and hence at the risk of missing a large amount of real bugs....
Uložené v:
| Vydané v: | Proceedings / International Conference on Software Engineering s. 519 - 529 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2017
|
| Predmet: | |
| ISSN: | 1558-1225 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a machine-learning-based technique for selectively applying unsoundness in static analysis. Existing bug-finding static analyzers are unsound in order to be precise and scalable in practice. However, they are uniformly unsound and hence at the risk of missing a large amount of real bugs. By being sound, we can improve the detectability of the analyzer but it often suffers from a large number of false alarms. Our approach aims to strike a balance between these two approaches by selectively allowing unsoundness only when it is likely to reduce false alarms, while retaining true alarms. We use an anomaly-detection technique to learn such harmless unsoundness. We implemented our technique in two static analyzers for full C. One is for a taint analysis for detecting format-string vulnerabilities, and the other is for an interval analysis for buffer-overflow detection. The experimental results show that our approach significantly improves the recall of the original unsound analysis without sacrificing the precision. |
|---|---|
| ISSN: | 1558-1225 |
| DOI: | 10.1109/ICSE.2017.54 |