Magnitude Monadic Logic over Words and the Use of Relative Internal Set Theory
Cost monadic logic extends monadic second-order logic with the ability to measure the cardinality of sets and comes with decision procedures for boundedness related questions. We provide new decidability results allowing the systematic investigation of questions involving "relative boundedness&...
Uloženo v:
| Vydáno v: | 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science s. 123 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2013
|
| Témata: | |
| ISBN: | 1479904139, 9781479904136 |
| ISSN: | 1043-6871 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Cost monadic logic extends monadic second-order logic with the ability to measure the cardinality of sets and comes with decision procedures for boundedness related questions. We provide new decidability results allowing the systematic investigation of questions involving "relative boundedness". We first introduce a suitable logic, magnitude monadic logic. We then establish the decidability of this logic over finite words. We finally advocate that developing the proofs in the axiomatic system of "relative internal set theory", a variant of nonstandard analysis, entails a significant simplification of the proofs. |
|---|---|
| ISBN: | 1479904139 9781479904136 |
| ISSN: | 1043-6871 |
| DOI: | 10.1109/LICS.2013.17 |

