Towards Better Approximation of Winner Determination for Combinatorial Auctions with Large Number of Bids

We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology : proceedings : 18-22 December, 2006, Hong Kong, China s. 618 - 621
Hlavní autoři: Fukuta, Naoki, Ito, Takayuki
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 18.12.2006
IEEE
Edice:ACM Conferences
Témata:
ISBN:9780769527482, 0769527485
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search algorithm, and their enhancement for searching multiple key parameter values. The experimental results demonstrate that our algorithms perform approximately 0.997 optimality compared with the optimal solutions and better than previously presented approximated algorithms. We also demonstrate that our algorithms are a kind of anytime algorithmthat bring better results in shorter computational time that can be applied to large and dynamic electronic markets.
ISBN:9780769527482
0769527485
DOI:10.1109/IAT.2006.123