Towards Better Approximation of Winner Determination for Combinatorial Auctions with Large Number of Bids

We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology : proceedings : 18-22 December, 2006, Hong Kong, China s. 618 - 621
Hlavní autoři: Fukuta, Naoki, Ito, Takayuki
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 18.12.2006
IEEE
Edice:ACM Conferences
Témata:
ISBN:9780769527482, 0769527485
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search algorithm, and their enhancement for searching multiple key parameter values. The experimental results demonstrate that our algorithms perform approximately 0.997 optimality compared with the optimal solutions and better than previously presented approximated algorithms. We also demonstrate that our algorithms are a kind of anytime algorithmthat bring better results in shorter computational time that can be applied to large and dynamic electronic markets.
AbstractList We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search algorithm, and their enhancement for searching multiple key parameter values. The experimental results demonstrate that our algorithms perform approximately 0.997 optimality compared with the optimal solutions and better than previously presented approximated algorithms. We also demonstrate that our algorithms are a kind of anytime algorithmthat bring better results in shorter computational time that can be applied to large and dynamic electronic markets.
We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search algorithm, and their enhancement for searching multiple key parameter values. The experimental results demonstrate that our algorithms perform approximately 0.997 optimality compared with the optimal solutions and better than previously presented approximated algorithms. We also demonstrate that our algorithms are a kind of anytime algorithm that bring better results in shorter computational time that can be applied to large and dynamic electronic markets.
Author Ito, Takayuki
Fukuta, Naoki
Author_xml – sequence: 1
  givenname: Naoki
  surname: Fukuta
  fullname: Fukuta, Naoki
  organization: Shizuoka University, Japan
– sequence: 2
  givenname: Takayuki
  surname: Ito
  fullname: Ito, Takayuki
  organization: Nagoya Institute of Technology, Japan
BookMark eNqNkD1PwzAQhi0BElC6sbF4YUIN_kziMS1flSpYihgt27HB0MSVnarw73FUfgC3nO59717pnnNw3IfeAnCJUYExErfLZl0QhMoCE3oEpqKqUVUKTipWk1MwTekT5aKCM4TOgF-HvYptgnM7DDbCZruN4dt3avChh8HBN9_3Wb-z2e18f9BdiHAROj3OIXq1gc3OjE6Cez98wJWK7xY-7zqdT3PI3LfpApw4tUl2-tcn4PXhfr14mq1eHpeLZjVThOFhRstKtY4igR2mui6FUazmrBaIuZZQgo22FHFLKSVliRW3ujTMUKZNrQi2dAKuDrneWiu3Mf8SfyRDnIiaZ_fm4CrTSR3CV5IYyRGczODkCE5mcFJHb13evv7PNv0Fy8lv6A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IAT.2006.123
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 621
ExternalDocumentID 4052985
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
ID FETCH-LOGICAL-a241t-367adf3091f13b869ca48548904fd2321cbe305e3332661a5eb6c4c34bc8a21e3
IEDL.DBID RIE
ISBN 9780769527482
0769527485
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000245650000097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:01:37 EDT 2025
Wed Jan 31 06:40:31 EST 2024
Wed Jan 31 06:52:36 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a241t-367adf3091f13b869ca48548904fd2321cbe305e3332661a5eb6c4c34bc8a21e3
PageCount 4
ParticipantIDs acm_books_10_1109_IAT_2006_123_brief
ieee_primary_4052985
acm_books_10_1109_IAT_2006_123
PublicationCentury 2000
PublicationDate 20061218
2006-Dec.
PublicationDateYYYYMMDD 2006-12-18
2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 20061218
  day: 18
PublicationDecade 2000
PublicationPlace Washington, DC, USA
PublicationPlace_xml – name: Washington, DC, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology : proceedings : 18-22 December, 2006, Hong Kong, China
PublicationTitleAbbrev IAT
PublicationYear 2006
Publisher IEEE Computer Society
IEEE
Publisher_xml – name: IEEE Computer Society
– name: IEEE
SSID ssj0000395400
Score 1.4563681
Snippet We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more...
SourceID ieee
acm
SourceType Publisher
StartPage 618
SubjectTerms Applied computing -- Operations research -- Decision analysis
Approximation algorithms
Computational complexity
Computer science
Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Cooperation and coordination
Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents
Consumer electronics
Greedy algorithms
Indium tin oxide
Informatics
Information systems -- Information systems applications -- Decision support systems
Information systems -- World Wide Web -- Online advertising
Information systems -- World Wide Web -- Web applications -- Electronic commerce
Mathematics of computing -- Discrete mathematics -- Combinatorics -- Combinatorial algorithms
Simulated annealing
Sorting
Temperature
Title Towards Better Approximation of Winner Determination for Combinatorial Auctions with Large Number of Bids
URI https://ieeexplore.ieee.org/document/4052985
WOSCitedRecordID wos000245650000097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8B4sGTH2DED9IDRycd7T56BJVoQggHVG5L17XJDoJhYPzzfe3GjIkx8bY2S7P0dX3v975-AH2GqMog8vBCqrmH-lp60ujMC_EmpDzzY-OY516m0WwWL5di3oCbuhZGa-2Sz_StfXSx_GytdtZVNuA2LBUHTWhGUVTWatX-FMoEGh-0ROYiQLAVB1WDnf14WCe-i8HTaFFGInxHVCTV2w96FaddJkf_-65j6HyX6ZF5rYBOoKFXp3C052kg1W_bhnzhcmMLMna1O2Rk-4h_5mXRIlkb8uoIuMj9PjXGzaM1S3Ct1I7X9piSUdlptiDWeUumNoeczByjiF1knGdFB54nD4u7R6-iWPAkqu6tx8JIZoah0WB8lsahsE3OEcQIyk2GxpavUo03gmaMWU0uA52GiivGUxXLoa_ZGbRW65U-B4J6PuBKUONnCNIi3A9lIiUZM4qHCPK60MNdTix2KBIHPahIUAyWCDNMUAxd6P_9QpJucm260LYSSN7LbhxJtfkXv09fwuGwohqi_hW0tpudvoYD9bHNi03PHaEvT7-_zA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNNETKhjxA3vg6HRdu7EdQSUQceGAym3ZujbZQTAMjH--r92YMTEm3tZmaZa-ru_93tcPoMsQVSlEHpZnS26hvo6tWMnU8vAmtHlKfWWY514mvTD05_NgWoPrqhZGSmmSz-SNfjSx_HQpNtpVdst1WMp3d2DX5dyhRbVW5VGxWYDmh11g88BFuOW7ZYud7dipUt-D23F_VsQiqKEqisXbD4IVo1-Gjf992SG0vgv1yLRSQUdQk4tjaGyZGkj54zYhm5ns2JwMTPUO6etO4p9ZUbZIloq8Ggoucr9NjjHzaM8SXCvR46U-qKRf9JrNiXbfkonOIieh4RTRiwyyNG_B8_BhdjeySpIFK0blvbaY14tTxdBsUJQlvhfoNucIYwKbqxTNLSoSiXeCZIxpXR67MvEEF4wnwo8dKtkJ1BfLhTwFgpre5SKwFU0RpvVwP4TqiZgxJbiHMK8NHdzlSKOHPDLgww4iFIOmwvQiFEMbun-_ECWrTKo2NLUEoveiH0dUbv7Z79NXsD-aPU2iyTh8PIcDpyQesukF1NerjbyEPfGxzvJVxxynL3mKwxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE%2FWIC%2FACM+international+conference+on+Intelligent+Agent+Technology&rft.atitle=Towards+Better+Approximation+of+Winner+Determination+for+Combinatorial+Auctions+with+Large+Number+of+Bids&rft.au=Fukuta%2C+Naoki&rft.au=Ito%2C+Takayuki&rft.series=ACM+Conferences&rft.date=2006-12-18&rft.pub=IEEE+Computer+Society&rft.isbn=9780769527482&rft.spage=618&rft.epage=621&rft_id=info:doi/10.1109%2FIAT.2006.123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769527482/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769527482/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769527482/sc.gif&client=summon&freeimage=true