Stone Duality for Markov Processes

We define Aumann algebras, an algebraic analog of probabilistic modal logic. An Aumann algebra consists of a Boolean algebra with operators modeling probabilistic transitions. We prove a Stone-type duality theorem between countable Aumann algebras and countably-generated continuous-space Markov proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science S. 321 - 330
Hauptverfasser: Kozen, Dexter, Larsen, Kim G., Mardare, Radu, Panangaden, Prakash
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2013
Schlagworte:
ISBN:1479904139, 9781479904136
ISSN:1043-6871
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define Aumann algebras, an algebraic analog of probabilistic modal logic. An Aumann algebra consists of a Boolean algebra with operators modeling probabilistic transitions. We prove a Stone-type duality theorem between countable Aumann algebras and countably-generated continuous-space Markov processes. Our results subsume existing results on completeness of probabilistic modal logics for Markov processes.
ISBN:1479904139
9781479904136
ISSN:1043-6871
DOI:10.1109/LICS.2013.38