Quantitative Monadic Second-Order Logic

While monadic second-order logic is a prominent logic for specifying languages of finite words, it lacks the power to compute quantitative properties, e.g. to count. An automata model capable of computing such properties are weighted automata, but logics equivalent to these automata have only recent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science s. 113 - 122
Hlavní autoři: Kreutzer, Stephan, Riveros, Cristian
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2013
Témata:
ISBN:1479904139, 9781479904136
ISSN:1043-6871
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:While monadic second-order logic is a prominent logic for specifying languages of finite words, it lacks the power to compute quantitative properties, e.g. to count. An automata model capable of computing such properties are weighted automata, but logics equivalent to these automata have only recently emerged. We propose a new framework for adding quantitative properties to logics specifying Boolean properties of words. We use this to define Quantitative Monadic Second-Order Logic (QMSO). In this way we obtain a simple logic which is equally expressive to weighted automata. We analyse its evaluation complexity, both data and combined complexity, and show completeness results for combined complexity. We further refine the analysis of this logic and obtain fragments that characterise exactly subclasses of weighted automata defined by the level of ambiguity allowed in the automata. In this way, we define a quantitative logic which has good decidability properties while being resonably expressive and enjoying a simple syntactical definition.
ISBN:1479904139
9781479904136
ISSN:1043-6871
DOI:10.1109/LICS.2013.16