Novel Bionic Topography with MiR-21 Coating for Improving Bone-Implant Integration through Regulating Cell Adhesion and Angiogenesis

Implant loosening is still the major form of the failure of artificial joints. Herein, inspired by the operculum of the river snail, we prepared a novel bionic micro/nanoscale topography on a titanium surface. This bionic topography promoted early cell adhesion through up-regulating the expression o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nano letters Ročník 20; číslo 10; s. 7716 - 7721
Hlavní autoři: Geng, Zhen, Li, Zhaoyang, Cui, Zhenduo, Wang, Jing, Yang, Xianjin, Liu, Changsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Chemical Society 14.10.2020
Témata:
ISSN:1530-6984, 1530-6992, 1530-6992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Implant loosening is still the major form of the failure of artificial joints. Herein, inspired by the operculum of the river snail, we prepared a novel bionic micro/nanoscale topography on a titanium surface. This bionic topography promoted early cell adhesion through up-regulating the expression of ITG α5β1 and thus accelerated the following cell spreading, proliferation, and differentiation. Moreover, a miR-21 coating, which promoted the angiogenic differentiation of MSCs, was fabricated on the bionic topography. Benefiting from both bionic micro/nanoscale topography and miR-21, blood vessel growth and bone formation and mineralization around the implant, as well as bone-implant bonding strength, were significantly improved. Collectively, the present study highlights the combination of the bionic micro/nanoscale topography and miR-21 on promoting cell adhesion and angiogenic differentiation and improving in vivo angiogenesis and bone-implant osseointegration. This work provides a new train of thought propelling the development of implants for potential application in the orthopedics field.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.0c03240