Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach

Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. Ho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing s. 327 - 336
Hlavní autori: Tao Chen, Bahsoon, Rami, Xin Yao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2014
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches.
AbstractList Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches.
Author Tao Chen
Bahsoon, Rami
Xin Yao
Author_xml – sequence: 1
  surname: Tao Chen
  fullname: Tao Chen
  email: txc919@cs.bham.ac.uk
  organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK
– sequence: 2
  givenname: Rami
  surname: Bahsoon
  fullname: Bahsoon, Rami
  email: r.bahsoo@cs.bham.ac.uk
  organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK
– sequence: 3
  surname: Xin Yao
  fullname: Xin Yao
  email: x.yao@cs.bham.ac.uk
  organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK
BookMark eNotjEFLwzAYhiMoqLMnj17yB1q_JG2aeCtFN2GjiO480uSri9S0pJ2wf29BTw_Py8N7Sy7DEJCQewYZY6Af93WdcWB5lvMLkuhSsbzUCxST1ySZpi8AYLJYWrghTRN6H5C-De90Nzhc5JP6QOcj0rofTu6JVnRzbqN31ARHK2fG2f8g3Z362ac9mhgwTrQaxzgYe7wjV53pJ0z-uSL7l-ePepNum_VrXW1Tw4WeU8E7QGaVBNnZgnNuOtEui3KIUrXKotKtBQvCcOycVYhLp1Vb5rLIpRAr8vD36xHxMEb_beL5UAIvC9DiFz6rTYA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UCC.2014.42
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479978816
1479978817
EndPage 336
ExternalDocumentID 7027509
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a239t-32f0e1c8606fc5222af3b0e18dee68b8ce89bc0c03a2efdc8eefc598b74654633
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380558700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:00:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a239t-32f0e1c8606fc5222af3b0e18dee68b8ce89bc0c03a2efdc8eefc598b74654633
PageCount 10
ParticipantIDs ieee_primary_7027509
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
PublicationTitleAbbrev UCC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001651100
Score 1.6702219
Snippet Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service...
SourceID ieee
SourceType Publisher
StartPage 327
SubjectTerms Cloud computing
Conferences
machine learning
multi-learners
prediction
QoS interference
QoS modeling
sensitivity
Title Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach
URI https://ieeexplore.ieee.org/document/7027509
WOSCitedRecordID wos000380558700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NBTH1r6JoceG103mkdvslQ8WUsreJMkOwtC2RWrhf77Zna32kMvvYUQCEweM5nM930A904NrA2bh_eC8-HEyBXuQel4prRAIyjxZkuxCTWZ6PncTBvwsMPCIGJZfIYdapZ_-Wnht5Qq6yr6YyO03oFSssJq7fMpckDsZzUErxeZ7ixJqHSr3yEZ9l_SKaXnGB3_b84TaO8heGy6cy6n0MD8DI5_NBhYfSRb8FxxhbKX4pWRrhmhy9kyZyGuY8l7sU0f2ZCNvwiXxWyesmFqV3TDsRJ5y0vRiBABsmHNLd6G2ejpLRnzWiSB21iYDRdxFmHP6_AQyXwIpmKbCRd6dIootdMetXE-8pGwMWap14hhnNFOEZOaFOIcmnmR4wUwL2NHAYklSnw18MYZo9BL75zsZyguoUX2WawqHoxFbZqrv7uv4YisX5V-3EBzs97iLRz6z83yY31XLt43XHea8g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0QNNETKhi_7cGjC8sWdltvZCPBiIgREm6k7c4mJGSXIJj47-2UFTx48dZMmjTp10yn894DuNNRWym7ebymdT4eMXLZezDUXhoJjpJT4k05sYloMBCTiRyW4H6LhUFEV3yGdWq6v_wkN2tKlTUi-mMjtN4eKWcVaK1dRiVsE_9ZAcJr-rIxjmMq3mrVSYj9l3iK8x3dyv9GPYLaDoTHhlv3cgwlzE6g8qPCwIpDWYXXDVsoe8vfGSmbEb6czTJmIzsWz_N18sA6rPdFyCymsoR1ErWgO4457K3nZCNsDMg6Bbt4Dcbdx1Hc8wqZBE8FXK48HqQ-No2wT5HU2HAqUCnX1iISxFBoYVBIbXzjcxVgmhiBaPtJoSPiUgs5P4Vylmd4BsyEgaaQRBEpftQ2UksZoQmN1mErRX4OVZqf6WLDhDEtpubib_MtHPRGL_1p_2nwfAmHtBKbQpArKK-Wa7yGffO5mn0sb9xCfgOeQZ47
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+IEEE%2FACM+7th+International+Conference+on+Utility+and+Cloud+Computing&rft.atitle=Online+QoS+Modeling+in+the+Cloud%3A+A+Hybrid+and+Adaptive+Multi-learners+Approach&rft.au=Tao+Chen&rft.au=Bahsoon%2C+Rami&rft.au=Xin+Yao&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=327&rft.epage=336&rft_id=info:doi/10.1109%2FUCC.2014.42&rft.externalDocID=7027509