Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach
Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. Ho...
Uložené v:
| Vydané v: | Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing s. 327 - 336 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2014
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches. |
|---|---|
| AbstractList | Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches. |
| Author | Tao Chen Bahsoon, Rami Xin Yao |
| Author_xml | – sequence: 1 surname: Tao Chen fullname: Tao Chen email: txc919@cs.bham.ac.uk organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK – sequence: 2 givenname: Rami surname: Bahsoon fullname: Bahsoon, Rami email: r.bahsoo@cs.bham.ac.uk organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK – sequence: 3 surname: Xin Yao fullname: Xin Yao email: x.yao@cs.bham.ac.uk organization: Sch. of Comput. Sci., Univ. of Birmingham, Birmingham, UK |
| BookMark | eNotjEFLwzAYhiMoqLMnj17yB1q_JG2aeCtFN2GjiO480uSri9S0pJ2wf29BTw_Py8N7Sy7DEJCQewYZY6Af93WdcWB5lvMLkuhSsbzUCxST1ySZpi8AYLJYWrghTRN6H5C-De90Nzhc5JP6QOcj0rofTu6JVnRzbqN31ARHK2fG2f8g3Z362ac9mhgwTrQaxzgYe7wjV53pJ0z-uSL7l-ePepNum_VrXW1Tw4WeU8E7QGaVBNnZgnNuOtEui3KIUrXKotKtBQvCcOycVYhLp1Vb5rLIpRAr8vD36xHxMEb_beL5UAIvC9DiFz6rTYA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/UCC.2014.42 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781479978816 1479978817 |
| EndPage | 336 |
| ExternalDocumentID | 7027509 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a239t-32f0e1c8606fc5222af3b0e18dee68b8ce89bc0c03a2efdc8eefc598b74654633 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380558700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:00:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a239t-32f0e1c8606fc5222af3b0e18dee68b8ce89bc0c03a2efdc8eefc598b74654633 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_7027509 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Dec. |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing |
| PublicationTitleAbbrev | UCC |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001651100 |
| Score | 1.6702219 |
| Snippet | Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 327 |
| SubjectTerms | Cloud computing Conferences machine learning multi-learners prediction QoS interference QoS modeling sensitivity |
| Title | Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach |
| URI | https://ieeexplore.ieee.org/document/7027509 |
| WOSCitedRecordID | wos000380558700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NBTH1r6JoceG103mkdvslQ8WUsreJMkOwtC2RWrhf77Zna32kMvvYUQCEweM5nM930A904NrA2bh_eC8-HEyBXuQel4prRAIyjxZkuxCTWZ6PncTBvwsMPCIGJZfIYdapZ_-Wnht5Qq6yr6YyO03oFSssJq7fMpckDsZzUErxeZ7ixJqHSr3yEZ9l_SKaXnGB3_b84TaO8heGy6cy6n0MD8DI5_NBhYfSRb8FxxhbKX4pWRrhmhy9kyZyGuY8l7sU0f2ZCNvwiXxWyesmFqV3TDsRJ5y0vRiBABsmHNLd6G2ejpLRnzWiSB21iYDRdxFmHP6_AQyXwIpmKbCRd6dIootdMetXE-8pGwMWap14hhnNFOEZOaFOIcmnmR4wUwL2NHAYklSnw18MYZo9BL75zsZyguoUX2WawqHoxFbZqrv7uv4YisX5V-3EBzs97iLRz6z83yY31XLt43XHea8g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0QNNETKhi_7cGjC8sWdltvZCPBiIgREm6k7c4mJGSXIJj47-2UFTx48dZMmjTp10yn894DuNNRWym7ebymdT4eMXLZezDUXhoJjpJT4k05sYloMBCTiRyW4H6LhUFEV3yGdWq6v_wkN2tKlTUi-mMjtN4eKWcVaK1dRiVsE_9ZAcJr-rIxjmMq3mrVSYj9l3iK8x3dyv9GPYLaDoTHhlv3cgwlzE6g8qPCwIpDWYXXDVsoe8vfGSmbEb6czTJmIzsWz_N18sA6rPdFyCymsoR1ErWgO4457K3nZCNsDMg6Bbt4Dcbdx1Hc8wqZBE8FXK48HqQ-No2wT5HU2HAqUCnX1iISxFBoYVBIbXzjcxVgmhiBaPtJoSPiUgs5P4Vylmd4BsyEgaaQRBEpftQ2UksZoQmN1mErRX4OVZqf6WLDhDEtpubib_MtHPRGL_1p_2nwfAmHtBKbQpArKK-Wa7yGffO5mn0sb9xCfgOeQZ47 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+IEEE%2FACM+7th+International+Conference+on+Utility+and+Cloud+Computing&rft.atitle=Online+QoS+Modeling+in+the+Cloud%3A+A+Hybrid+and+Adaptive+Multi-learners+Approach&rft.au=Tao+Chen&rft.au=Bahsoon%2C+Rami&rft.au=Xin+Yao&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=327&rft.epage=336&rft_id=info:doi/10.1109%2FUCC.2014.42&rft.externalDocID=7027509 |