Interpretable Software Maintenance and Support Effort Prediction Using Machine Learning

Software maintenance and support efforts consume a significant amount of the software project budget to operate the software system in its expected quality. Manually estimating the total hours required for this phase can be very time-consuming, and often differs from the actual cost that is incurred...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 288 - 289
Hlavní autori: Haldar, Susmita, Capretz, Luiz Fernando
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: ACM 14.04.2024
Predmet:
ISSN:2574-1934
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Software maintenance and support efforts consume a significant amount of the software project budget to operate the software system in its expected quality. Manually estimating the total hours required for this phase can be very time-consuming, and often differs from the actual cost that is incurred. The automation of these estimation processes can be implemented with the aid of machine learning algorithms. The maintenance and support effort prediction models need to be explainable so that project managers can understand which features contributed to the model outcome. This study contributes to the development of the maintenance and support effort prediction model using various tree-based re-gression machine-learning techniques from cross-company project information. The developed models were explained using the state-of-the-art model agnostic technique SHapley Additive Explanations (SHAP) to understand the significance of features from the developed model. This study concluded that staff size, application size, and number of defects are major contributors to the maintenance and support effort prediction models.
AbstractList Software maintenance and support efforts consume a significant amount of the software project budget to operate the software system in its expected quality. Manually estimating the total hours required for this phase can be very time-consuming, and often differs from the actual cost that is incurred. The automation of these estimation processes can be implemented with the aid of machine learning algorithms. The maintenance and support effort prediction models need to be explainable so that project managers can understand which features contributed to the model outcome. This study contributes to the development of the maintenance and support effort prediction model using various tree-based re-gression machine-learning techniques from cross-company project information. The developed models were explained using the state-of-the-art model agnostic technique SHapley Additive Explanations (SHAP) to understand the significance of features from the developed model. This study concluded that staff size, application size, and number of defects are major contributors to the maintenance and support effort prediction models.
Author Capretz, Luiz Fernando
Haldar, Susmita
Author_xml – sequence: 1
  givenname: Susmita
  surname: Haldar
  fullname: Haldar, Susmita
  email: shaldar@fanshawec.ca
  organization: School of Information Technology, Fanshawe College,London,Ontario,Canada
– sequence: 2
  givenname: Luiz Fernando
  surname: Capretz
  fullname: Capretz, Luiz Fernando
  email: lcapretz@uwo.ca
  organization: Western University,Department of Electrical and Computer Engineering,London,Ontario,Canada
BookMark eNotj01LxDAURaMoOI6zduMif6DjS14-mqUMow5UFGbE5ZCmL1oZ05JWxH9vRVcH7rlcuOfsJHWJGLsUsBRC6Ws06JQtl2gUgnFHbOGsKxWABQ1SHLOZ1FYVwqE6Y4theAcAlIDK2Rl72aSRcp9p9PWB-LaL45fPxB98O4nkUyDuU8O3n33f5ZGvY_zFU6amDWPbJf48tOl16oe3NhGvyOc0BRfsNPrDQIt_ztnudr1b3RfV491mdVMVXqJ0hTNShSiMMtEAKS88BZSNIQy-Vt7bMpaRpn-uCRpjPfnG1mWM0DgEi3N29TfbEtG-z-2Hz997AVqrEjX-AFFxVI4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3639478.3643069
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705021
EISSN 2574-1934
EndPage 289
ExternalDocumentID 10554835
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a2329-9624cf1646f60e4a1aec32d6e3cab4aa78f8fe3949dc53fb1aed7b8ff0d93073
IEDL.DBID RIE
IngestDate Thu May 08 06:04:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2329-9624cf1646f60e4a1aec32d6e3cab4aa78f8fe3949dc53fb1aed7b8ff0d93073
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3639478.3643069
PageCount 2
ParticipantIDs ieee_primary_10554835
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online)
PublicationTitleAbbrev ICSE-COMPANION
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0003203497
ssib055574197
Score 2.2708054
Snippet Software maintenance and support efforts consume a significant amount of the software project budget to operate the software system in its expected quality....
SourceID ieee
SourceType Publisher
StartPage 288
SubjectTerms Automation
Costs
Estimation
Explainable machine learning models
Machine learning
Machine learning algorithms
Maintenance and support effort prediction
Model agnostic interpretation
Predictive models
Software maintenance
Title Interpretable Software Maintenance and Support Effort Prediction Using Machine Learning
URI https://ieeexplore.ieee.org/document/10554835
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YE1bWI7cTyjVgxQVaIS3Sp_nBESSlEo8Pe5c1M6MTAlcjIk59jvlHvvHWO3iDk-lM5kWgibKaGrzHihMxOVDFCZIuokFH7Q02m9WJhZJ1ZPWhgASOQzGNJpquWHlf-kX2UjauaoMGXosZ7W1Uastf14yrJEcOxKYrQNS0HWK7qz8ylUOZKIxkrXQ4konCeG866fSoKTyeE_H-SIDXbCPD77hZxjtgfNCXveEQfdG_An3Fi_bQv80ZIXBBlqALdN4NTAE5NtPo6RDrOWajQ0LzzxBvB-4lUC7yxXXwZsPhnP7-6zrl9CZjEvIqNNoXwkw7BY5aBsYcFLESqQ3jplra5jHQFjYIIvZXR4PWhXx5gHQ0v9lPWbVQNnjOPLechtgYvdKGWUq50z1kcckcqJ6pwNKCjL940jxnIbj4s_xi_ZgcBkgKowhbpi_XX7Cdds33-tXz_amzSPP8y4nmc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCaNrGdOJ5RqyLaqhKV6Fb544yQUIpCC38fn5vSiYEpkZMhOcd-p9x77wi5D5hjXW5UIhnTiWCySJRlMlFecAeFyryMQuGhHI_L2UxNGrF61MIAQCSfQQdPYy3fLewKf5V1sZmjCCnDLtnLhWDpWq61-XzyPA_w2BTFcCPmDM1XZGPok4m8ywMeC1l2eMDhNHKctx1VIqD0j_75KMekvZXm0ckv6JyQHahOycuWOmjegT6HrfVb10BHGt0g0FIDqK4cxRaeId2mPe_xMKmxSoMzQyNzINyPzEqgjenqa5tM-73pwyBpOiYkOmRGaLXJhPVoGeaLFITONFjOXAHcaiO0lqUvPYQYKGdz7k247qQpvU-dwsV-RlrVooJzQsPLWUh1Fpa7EkIJUxqjtPVhhAvDigvSxqDMP9aeGPNNPC7_GL8jB4PpaDgfPo6frsghC6kB1mQycU1ay3oFN2Tffi3fPuvbOKc_OZmhrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=Interpretable+Software+Maintenance+and+Support+Effort+Prediction+Using+Machine+Learning&rft.au=Haldar%2C+Susmita&rft.au=Capretz%2C+Luiz+Fernando&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2574-1934&rft.spage=288&rft.epage=289&rft_id=info:doi/10.1145%2F3639478.3643069&rft.externalDocID=10554835