Fast Deterministic Black-Box Context-Free Grammar Inference
Black-box context-free grammar inference is a hard problem as in many practical settings it only has access to a limited number of example programs. The state-of-the-art approach Arvada heuristically generalizes grammar rules starting from flat parse trees and is non-deterministic to explore differe...
Uloženo v:
| Vydáno v: | Proceedings / International Conference on Software Engineering s. 1434 - 1445 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
14.04.2024
|
| Témata: | |
| ISSN: | 1558-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Black-box context-free grammar inference is a hard problem as in many practical settings it only has access to a limited number of example programs. The state-of-the-art approach Arvada heuristically generalizes grammar rules starting from flat parse trees and is non-deterministic to explore different generalization sequences. We observe that many of Arvada's generalization steps violate common language concept nesting rules. We thus propose to pre-structure input programs along these nesting rules, apply learnt rules recursively, and make black-box context-free grammar inference deterministic. The resulting Tree Vada yielded faster runtime and higher-quality grammars in an empirical comparison. The Treevada source code, scripts, evaluation parameters, and training data are open-source and publicly available (https://doi.org/10.6084/m9.figshare.23907738). |
|---|---|
| ISSN: | 1558-1225 |
| DOI: | 10.1145/3597503.3639214 |