How to Support ML End-User Programmers through a Conversational Agent

Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we des...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Conference on Software Engineering s. 629 - 640
Hlavní autoři: Garcia, Emily Arteaga, Pimentel, Joao Felipe, Feng, Zixuan, Gerosa, Marco, Steinmacher, Igor, Sarma, Anita
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 14.04.2024
Témata:
ISSN:1558-1225
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we designed a conversational agent named "Newton" as an expert to support ML-EUPs. Newton's design was shaped by a comprehensive review of existing literature, from which we identified six primary challenges faced by ML-EUPs and five strategies to assist them. To evaluate the efficacy of Newton's design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs. Our findings indicate that Newton effectively assisted ML-EUPs, addressing the challenges highlighted in the literature. We also proposed six design guidelines for future conversational agents, which can help other EUP applications and software engineering activities.
AbstractList Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we designed a conversational agent named "Newton" as an expert to support ML-EUPs. Newton's design was shaped by a comprehensive review of existing literature, from which we identified six primary challenges faced by ML-EUPs and five strategies to assist them. To evaluate the efficacy of Newton's design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs. Our findings indicate that Newton effectively assisted ML-EUPs, addressing the challenges highlighted in the literature. We also proposed six design guidelines for future conversational agents, which can help other EUP applications and software engineering activities.
Author Feng, Zixuan
Gerosa, Marco
Garcia, Emily Arteaga
Steinmacher, Igor
Sarma, Anita
Pimentel, Joao Felipe
Author_xml – sequence: 1
  givenname: Emily Arteaga
  surname: Garcia
  fullname: Garcia, Emily Arteaga
  email: arteagae@oregonstate.edu
  organization: Oregon State University,Corvallis,OR,USA
– sequence: 2
  givenname: Joao Felipe
  surname: Pimentel
  fullname: Pimentel, Joao Felipe
  email: joao.pimentel@nau.edu
  organization: Northern Arizona University,Flagstaff,AZ,USA
– sequence: 3
  givenname: Zixuan
  surname: Feng
  fullname: Feng, Zixuan
  email: fengzi@oregonstate.edu
  organization: Oregon State University,Corvallis,OR,USA
– sequence: 4
  givenname: Marco
  surname: Gerosa
  fullname: Gerosa, Marco
  email: marco.gerosa@nau.edu
  organization: Northern Arizona University,Flagstaff,AZ,USA
– sequence: 5
  givenname: Igor
  surname: Steinmacher
  fullname: Steinmacher, Igor
  email: igor.steinmacher@nau.edu
  organization: Northern Arizona University,Flagstaff,AZ,USA
– sequence: 6
  givenname: Anita
  surname: Sarma
  fullname: Sarma, Anita
  email: anita.sarma@oregonstate.edu
  organization: Oregon State University,Corvallis,OR,USA
BookMark eNotjl1LwzAYhaMoOGevvfEif6DzzcebNJdjVCdUFHTXI1mTrrA2Je0U_70FvTqch8PDuSVXfew9IfcMVoxJfBRoNIJYCQUFE3BBMqNNIQE0cKblJVkwxCJnnOMNycaxdYBSoFZSLEi5jd90ivTjPAwxTfS1omVf57vRJ_qeYpNs1_k00umY4rk5Uks3sf-aiZ3a2NsTXTe-n-7IdbCn0Wf_uSS7p_Jzs82rt-eXzbrKLRcccuWwEIojc2jQu_mkUbIOxoYD96AVP9TogwbmrGSAgQvwtbFzcXWwVoslefjztt77_ZDazqaf_TyVBWdS_AJDEEzQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3597503.3608130
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400702174
EISSN 1558-1225
EndPage 640
ExternalDocumentID 10548214
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2236198,2235601,2247929,2303042,2303043
  funderid: 10.13039/100000001
GroupedDBID -~X
.4S
.DC
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a2320-6b5836251b595eb984964df9afc2e0762cd5ef701ba4105f230ed9aa41bdfaa73
IEDL.DBID RIE
IngestDate Wed Aug 27 01:53:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2320-6b5836251b595eb984964df9afc2e0762cd5ef701ba4105f230ed9aa41bdfaa73
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3597503.3608130
PageCount 12
ParticipantIDs ieee_primary_10548214
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib054357643
ssib055306466
ssj0006499
Score 2.3087764
Snippet Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs)...
SourceID ieee
SourceType Publisher
StartPage 629
SubjectTerms Backtracking
Codes
Conversational Agent
Design methodology
End-user programming
Machine learning
Machine learning algorithms
Reviews
Task analysis
Wizard of Oz
Title How to Support ML End-User Programmers through a Conversational Agent
URI https://ieeexplore.ieee.org/document/10548214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyLe8sCaksR2HI-oatUBqg5U6lb5KbEkqA_4-71zXcrCwJZEShSdz77P5-_uI-RJcZcH51hWaB0yzpzIlAdftsLUvqysrr2OYhNyMqnnczVNxeqxFsZ7H8lnvo-X8SzftXaDqTKY4YCvS5StPpZS7oq19s4jIO7LX72lUA6n4ohV0rJcAbZPvX0KLp4ZIGmRsz6rIChGDvRBXCXGllH3n391RnqHKj06_Yk_5-TINxeku5dpoGnWXpLhuP2m65aigCeAbfr2SoeNy2bgfPg-0rMweU2TZA_VdIBU9OUq5QnpC5Zf9chsNHwfjLOknpDpEsuiKyNqiE6iMEIJb1TNVcVdUDrY0uewBlonfJB5YTRSPQPsRbxTGm6MC1pLdkU6Tdv4a0JNDfsIh3xTsLCzTAHqcrZUPMAeFL59Q3polsXnrkHGYm-R2z-e35HTErABHsoU_J501suNfyAn9mv9sVo-xmHdAuDcoH4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYKpPIp444E1JYntJB5R1aqIturQSt0qxw-JJUF9wN_nznUoCwNbEilRdD77Pp-_u4-QJ8lN7IxhUaKUizgzIpIWfFmLsrBpplVhlRebyCeTYrGQ01Cs7mthrLWefGa7eOnP8k2tt5gqgxkO-DpF2epDwXma7Mq1GvcREPnzX92lUBAn44hWwsKcAboP3X0SLp4ZYGkRsy7LICx6FvReXsVHl0H7n_91Sjr7Oj06_YlAZ-TAVuek3Qg10DBvL0h_WH_RTU1RwhPgNh2PaL8y0RzcD99Hghamr2kQ7aGK9pCMvlqHTCF9wQKsDpkP-rPeMAr6CZFKsTA6K0UB8UkkpZDClrLgMuPGSeV0amNYBbUR1uVxUiokezrYjVgjFdyUximVs0vSqurKXhFaFrCTMMg4BQsbzSTgLqNTyR3sQuHb16SDZll-7FpkLBuL3Pzx_JEcD2fj0XL0Onm7JScpIAU8okn4HWltVlt7T4705-Z9vXrwQ_wNblqjxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=How+to+Support+ML+End-User+Programmers+through+a+Conversational+Agent&rft.au=Garcia%2C+Emily+Arteaga&rft.au=Pimentel%2C+Joao+Felipe&rft.au=Feng%2C+Zixuan&rft.au=Gerosa%2C+Marco&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=629&rft.epage=640&rft_id=info:doi/10.1145%2F3597503.3608130&rft.externalDocID=10548214