How to Support ML End-User Programmers through a Conversational Agent
Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we des...
Uložené v:
| Vydané v: | Proceedings / International Conference on Software Engineering s. 629 - 640 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
ACM
14.04.2024
|
| Predmet: | |
| ISSN: | 1558-1225 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Machine Learning (ML) is increasingly gaining significance for enduser programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we designed a conversational agent named "Newton" as an expert to support ML-EUPs. Newton's design was shaped by a comprehensive review of existing literature, from which we identified six primary challenges faced by ML-EUPs and five strategies to assist them. To evaluate the efficacy of Newton's design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs. Our findings indicate that Newton effectively assisted ML-EUPs, addressing the challenges highlighted in the literature. We also proposed six design guidelines for future conversational agents, which can help other EUP applications and software engineering activities. |
|---|---|
| ISSN: | 1558-1225 |
| DOI: | 10.1145/3597503.3608130 |