Some Applications of the Fourier Transform in Algebraic Coding Theory

This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a direct sum of matrix rings.

Uložené v:
Podrobná bibliografia
Vydané v:Algebra for Secure and Reliable Communication Modeling Ročník 642; s. 1 - 40
Hlavný autor: Wood, Jay A.
Médium: Kapitola
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 23.06.2015
Edícia:Contemporary Mathematics
ISBN:1470410184, 9781470410186
ISSN:0271-4132, 1098-3627
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a direct sum of matrix rings.
AbstractList This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a direct sum of matrix rings.
Author Wood, Jay A.
Author_xml – sequence: 1
  givenname: Jay A.
  surname: Wood
  fullname: Wood, Jay A.
  email: jay.wood@wmich.edu
  organization: Western Michigan University
BookMark eNotkLtTwjAAxqOiZ0FW54wulbyax8hxoN5x5yDOuSRNoNo2mJTB_14QvuUbvsfwG4NRH3sPwCNGzxgpNHOx72ackRkmUqgrMMZMIEYqzvE1KI4VWVJOxM0lwAhLNgIFIgKXDFNyBwolCcJYcXEPpjl_oaMYIqzCBVh-xM7D-X7fNs4MTewzjAEOOw9X8ZAan-AmmT6HmDrY9HDebr1NpnFwEeum38LNzsf0-wBug2mzn158Aj5Xy83itVy_v7wt5uvSEIqGkhphhOSWCOOJlJ5K41QQNfNW4JqjQGurgiSOWasq54LloZKSU6SMFIHTCcDn332KPwefB-1tjN_O90MyrduZ_eBT1kxSgijSlcanzdN5Y7p8rmeNkT6x1Se2-shW_7Olfz4GZ_o
ContentType Book Chapter
DBID FFUUA
DEWEY 621.382/20151274
DOI 10.1090/conm/642/12879
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISBN 1470425661
9781470425661
EISSN 1098-3627
Editor Lahyane, Mustapha
Martínez-Moro, Edgar
Editor_xml – sequence: 1
  givenname: Mustapha
  surname: Lahyane
  fullname: Lahyane, Mustapha
  organization: Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
– sequence: 2
  givenname: Edgar
  surname: Martínez-Moro
  fullname: Martínez-Moro, Edgar
  organization: Universidad Valladolid, Soria, Spain
EndPage 40
ExternalDocumentID EBC4832030_5_16
10_1090_conm_642_12879
GroupedDBID 38.
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
AJWXA
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
GEOUK
S5T
FFUUA
ID FETCH-LOGICAL-a230t-3a7a786b27ae288e38ac9f7d4eb71d60f3db9f82c4bb95ccfb6f5886309a87f63
ISBN 1470410184
9781470410186
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-4132
IngestDate Wed May 28 23:59:52 EDT 2025
Thu Aug 14 15:24:57 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK5102.9.A444 2015
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a230t-3a7a786b27ae288e38ac9f7d4eb71d60f3db9f82c4bb95ccfb6f5886309a87f63
OCLC 982011967
PQID EBC4832030_5_16
PageCount 40
ParticipantIDs proquest_ebookcentralchapters_4832030_5_16
ams_ebooks_10_1090_conm_642_12879
PublicationCentury 2000
PublicationDate 20150623
2015
PublicationDateYYYYMMDD 2015-06-23
2015-01-01
PublicationDate_xml – month: 6
  year: 2015
  text: 20150623
  day: 23
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: United States
PublicationSeriesTitle Contemporary Mathematics
PublicationTitle Algebra for Secure and Reliable Communication Modeling
PublicationYear 2015
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
References Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual codes and invariant theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066)
V. A. Zinov′ev and T. Èrikson, On Fourier-invariant partitions of finite abelian groups and on the MacWilliams identity for group codes, Problemy Peredachi Informatsii 32 (1996), no. 1, 137–143 (Russian, with Russian summary); English transl., Problems Inform. Transmission 32 (1996), no. 1, 117–122. MR 1384939 (97m:20062)
A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The Z4\textbf {Z}_4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046 (95k:94030), DOI 10.1109/18.312154
Thomas Honold and Ivan Landjev, MacWilliams identities for linear codes over finite Frobenius rings, Finite fields and applications (Augsburg, 1999) Springer, Berlin, 2001, pp. 276–292. MR 1849094 (2002i:94066)
T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001), DOI 10.1007/978-1-4612-0525-8
Heide Gluesing-Luerssen, Partitions of Frobenius rings induced by the homogeneous weight, Adv. Math. Commun. 8 (2014), no. 2, 191–207. MR 3209298, DOI 10.3934/amc.2014.8.191
Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033)
V. A. Zinov′ev and T. Èrikson, Fourier-invariant pairs of partitions of finite abelian groups, and association schemes, Problemy Peredachi Informatsii 45 (2009), no. 3, 33–44 (Russian, with Russian summary); English transl., Probl. Inf. Transm. 45 (2009), no. 3, 221–231. MR 2590742 (2010k:94008), DOI 10.1134/S003294600903003X
Audrey Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003), DOI 10.1017/CBO9780511626265
Thomas Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415. MR 1831096 (2002b:16033), DOI 10.1007/PL00000451
Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297
A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078)
I. Konstantinesku and V. Khaĭze, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii 33 (1997), no. 3, 22–28 (Russian, with Russian summary); English transl., Problems Inform. Transmission 33 (1997), no. 3, 208–213 (1998). MR 1476368 (99a:94058)
Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034), DOI 10.1016/S0019-3577(97)83350-2
Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56 \#8675)
Jay A. Wood, Anti-isomorphisms, character modules and self-dual codes over non-commutative rings, Int. J. Inf. Coding Theory 1 (2010), no. 4, 429–444. MR 2772908 (2011m:94134), DOI 10.1504/IJICOT.2010.032867
Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979 (26 \#2519)
Eimear Byrne, Marcus Greferath, and Michael E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301. MR 2298938 (2008c:94053), DOI 10.1007/s10623-006-9035-4
D. J. Benson, Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. MR 1644252 (99f:20001a)
References_xml – reference: A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078)
– reference: Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297
– reference: Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56 \#8675)
– reference: Jay A. Wood, Anti-isomorphisms, character modules and self-dual codes over non-commutative rings, Int. J. Inf. Coding Theory 1 (2010), no. 4, 429–444. MR 2772908 (2011m:94134), DOI 10.1504/IJICOT.2010.032867
– reference: Audrey Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003), DOI 10.1017/CBO9780511626265
– reference: Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034), DOI 10.1016/S0019-3577(97)83350-2
– reference: V. A. Zinov′ev and T. Èrikson, Fourier-invariant pairs of partitions of finite abelian groups, and association schemes, Problemy Peredachi Informatsii 45 (2009), no. 3, 33–44 (Russian, with Russian summary); English transl., Probl. Inf. Transm. 45 (2009), no. 3, 221–231. MR 2590742 (2010k:94008), DOI 10.1134/S003294600903003X
– reference: Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979 (26 \#2519)
– reference: V. A. Zinov′ev and T. Èrikson, On Fourier-invariant partitions of finite abelian groups and on the MacWilliams identity for group codes, Problemy Peredachi Informatsii 32 (1996), no. 1, 137–143 (Russian, with Russian summary); English transl., Problems Inform. Transmission 32 (1996), no. 1, 117–122. MR 1384939 (97m:20062)
– reference: T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001), DOI 10.1007/978-1-4612-0525-8
– reference: Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual codes and invariant theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066)
– reference: A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The Z4\textbf {Z}_4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046 (95k:94030), DOI 10.1109/18.312154
– reference: I. Konstantinesku and V. Khaĭze, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii 33 (1997), no. 3, 22–28 (Russian, with Russian summary); English transl., Problems Inform. Transmission 33 (1997), no. 3, 208–213 (1998). MR 1476368 (99a:94058)
– reference: Heide Gluesing-Luerssen, Partitions of Frobenius rings induced by the homogeneous weight, Adv. Math. Commun. 8 (2014), no. 2, 191–207. MR 3209298, DOI 10.3934/amc.2014.8.191
– reference: Thomas Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415. MR 1831096 (2002b:16033), DOI 10.1007/PL00000451
– reference: Thomas Honold and Ivan Landjev, MacWilliams identities for linear codes over finite Frobenius rings, Finite fields and applications (Augsburg, 1999) Springer, Berlin, 2001, pp. 276–292. MR 1849094 (2002i:94066)
– reference: D. J. Benson, Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. MR 1644252 (99f:20001a)
– reference: Eimear Byrne, Marcus Greferath, and Michael E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301. MR 2298938 (2008c:94053), DOI 10.1007/s10623-006-9035-4
– reference: Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033)
SSID ssj0000402451
ssj0001524394
ssib056874659
Score 1.7839894
Snippet This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams identities on weight enumerators of...
SourceID proquest
ams
SourceType Publisher
StartPage 1
Title Some Applications of the Fourier Transform in Algebraic Coding Theory
URI https://www.ams.org/conm/642/12879/
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4832030&ppg=16
Volume 642
WOSCitedRecordID wos000363917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZpt8PWy36yttvQYKeBiWzL-nHpYSVpYdDtkEJvRpKlEcictslK__w9SZaSpqcedjHGCEd-n_IkPb3vewh9FfD_cYSZoqKmKaiqTaEkLQulJNy7BiZ1FYpN8IsLcXUlf41GJ4kLc7fgfS_u7-X1f4UangHYnjr7BLjzS-EB3APocAXY4bqzIn4Ye405x4vf_iQ4JA-GULodGIiLeeBIPeCDhEJoizR3qcTX_WPj2tRssuT86nQ6VLebpaVuCJXE35sbeHOgx2Suf44llM1OLGFzSJQlY70kyTJrkuSNZ0k5oV7si217UhaFsh55ZSJ9GiPs72GIT6GRjxbATk1u5qB07l7uyGKHiXby_ZSC4wF31DYttLi-KXzVMH-6PpRQ2UN7nIOXe3Y2-Xn5I_mThglOkxp-ZI1Xnggc-H1D_2mS_Urfk4U9ydh3eAzdHYfOBine1aMpO6xDZq_QgeemYE8aga6_RiPbv0EvtzQl36KJBxBvA4iXDoOh8QAgzgDieY8zgDgCiCOA79DldDI7PS-GWhmFgk3kuqgVV1wwXXFlKyFsLZSRjnfUal52jLi609KJylCtZWOM08w1QrCaSCW4Y_V7tN8ve_sBYTASpVp0laaaMucUscLVTJGOckp0dYi-gCHacJi_amMSA2m9sVowVhuMdYi-JTPFhkOqsYn2WbXbgB49pfExerEZuR_R_vr2r_2Enpu79Xx1-3kYAf8A4j5lIA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algebra+for+Secure+and+Reliable+Communication+Modeling&rft.atitle=Some+Applications+of+the+Fourier+Transform+in+Algebraic+Coding+Theory&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410186&rft.volume=642&rft_id=info:doi/10.1090%2Fconm%2F642%2F12879&rft.externalDBID=16&rft.externalDocID=EBC4832030_5_16
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4832030-l.jpg