Some Applications of the Fourier Transform in Algebraic Coding Theory
This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a direct sum of matrix rings.
Uložené v:
| Vydané v: | Algebra for Secure and Reliable Communication Modeling Ročník 642; s. 1 - 40 |
|---|---|
| Hlavný autor: | |
| Médium: | Kapitola |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
23.06.2015
|
| Edícia: | Contemporary Mathematics |
| ISBN: | 1470410184, 9781470410186 |
| ISSN: | 0271-4132, 1098-3627 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams
identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a
direct sum of matrix rings. |
|---|---|
| AbstractList | This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams
identities on weight enumerators of linear codes and the decomposition of a semi-simple group algebra of a finite group into a
direct sum of matrix rings. |
| Author | Wood, Jay A. |
| Author_xml | – sequence: 1 givenname: Jay A. surname: Wood fullname: Wood, Jay A. email: jay.wood@wmich.edu organization: Western Michigan University |
| BookMark | eNotkLtTwjAAxqOiZ0FW54wulbyax8hxoN5x5yDOuSRNoNo2mJTB_14QvuUbvsfwG4NRH3sPwCNGzxgpNHOx72ackRkmUqgrMMZMIEYqzvE1KI4VWVJOxM0lwAhLNgIFIgKXDFNyBwolCcJYcXEPpjl_oaMYIqzCBVh-xM7D-X7fNs4MTewzjAEOOw9X8ZAan-AmmT6HmDrY9HDebr1NpnFwEeum38LNzsf0-wBug2mzn158Aj5Xy83itVy_v7wt5uvSEIqGkhphhOSWCOOJlJ5K41QQNfNW4JqjQGurgiSOWasq54LloZKSU6SMFIHTCcDn332KPwefB-1tjN_O90MyrduZ_eBT1kxSgijSlcanzdN5Y7p8rmeNkT6x1Se2-shW_7Olfz4GZ_o |
| ContentType | Book Chapter |
| DBID | FFUUA |
| DEWEY | 621.382/20151274 |
| DOI | 10.1090/conm/642/12879 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISBN | 1470425661 9781470425661 |
| EISSN | 1098-3627 |
| Editor | Lahyane, Mustapha Martínez-Moro, Edgar |
| Editor_xml | – sequence: 1 givenname: Mustapha surname: Lahyane fullname: Lahyane, Mustapha organization: Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico – sequence: 2 givenname: Edgar surname: Martínez-Moro fullname: Martínez-Moro, Edgar organization: Universidad Valladolid, Soria, Spain |
| EndPage | 40 |
| ExternalDocumentID | EBC4832030_5_16 10_1090_conm_642_12879 |
| GroupedDBID | 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER AJWXA ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ GEOUK S5T FFUUA |
| ID | FETCH-LOGICAL-a230t-3a7a786b27ae288e38ac9f7d4eb71d60f3db9f82c4bb95ccfb6f5886309a87f63 |
| ISBN | 1470410184 9781470410186 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-4132 |
| IngestDate | Wed May 28 23:59:52 EDT 2025 Thu Aug 14 15:24:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | TK5102.9.A444 2015 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a230t-3a7a786b27ae288e38ac9f7d4eb71d60f3db9f82c4bb95ccfb6f5886309a87f63 |
| OCLC | 982011967 |
| PQID | EBC4832030_5_16 |
| PageCount | 40 |
| ParticipantIDs | proquest_ebookcentralchapters_4832030_5_16 ams_ebooks_10_1090_conm_642_12879 |
| PublicationCentury | 2000 |
| PublicationDate | 20150623 2015 |
| PublicationDateYYYYMMDD | 2015-06-23 2015-01-01 |
| PublicationDate_xml | – month: 6 year: 2015 text: 20150623 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: United States |
| PublicationSeriesTitle | Contemporary Mathematics |
| PublicationTitle | Algebra for Secure and Reliable Communication Modeling |
| PublicationYear | 2015 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| References | Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual codes and invariant theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066) V. A. Zinov′ev and T. Èrikson, On Fourier-invariant partitions of finite abelian groups and on the MacWilliams identity for group codes, Problemy Peredachi Informatsii 32 (1996), no. 1, 137–143 (Russian, with Russian summary); English transl., Problems Inform. Transmission 32 (1996), no. 1, 117–122. MR 1384939 (97m:20062) A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The Z4\textbf {Z}_4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046 (95k:94030), DOI 10.1109/18.312154 Thomas Honold and Ivan Landjev, MacWilliams identities for linear codes over finite Frobenius rings, Finite fields and applications (Augsburg, 1999) Springer, Berlin, 2001, pp. 276–292. MR 1849094 (2002i:94066) T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001), DOI 10.1007/978-1-4612-0525-8 Heide Gluesing-Luerssen, Partitions of Frobenius rings induced by the homogeneous weight, Adv. Math. Commun. 8 (2014), no. 2, 191–207. MR 3209298, DOI 10.3934/amc.2014.8.191 Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033) V. A. Zinov′ev and T. Èrikson, Fourier-invariant pairs of partitions of finite abelian groups, and association schemes, Problemy Peredachi Informatsii 45 (2009), no. 3, 33–44 (Russian, with Russian summary); English transl., Probl. Inf. Transm. 45 (2009), no. 3, 221–231. MR 2590742 (2010k:94008), DOI 10.1134/S003294600903003X Audrey Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003), DOI 10.1017/CBO9780511626265 Thomas Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415. MR 1831096 (2002b:16033), DOI 10.1007/PL00000451 Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297 A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078) I. Konstantinesku and V. Khaĭze, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii 33 (1997), no. 3, 22–28 (Russian, with Russian summary); English transl., Problems Inform. Transmission 33 (1997), no. 3, 208–213 (1998). MR 1476368 (99a:94058) Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034), DOI 10.1016/S0019-3577(97)83350-2 Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56 \#8675) Jay A. Wood, Anti-isomorphisms, character modules and self-dual codes over non-commutative rings, Int. J. Inf. Coding Theory 1 (2010), no. 4, 429–444. MR 2772908 (2011m:94134), DOI 10.1504/IJICOT.2010.032867 Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979 (26 \#2519) Eimear Byrne, Marcus Greferath, and Michael E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301. MR 2298938 (2008c:94053), DOI 10.1007/s10623-006-9035-4 D. J. Benson, Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. MR 1644252 (99f:20001a) |
| References_xml | – reference: A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078) – reference: Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297 – reference: Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56 \#8675) – reference: Jay A. Wood, Anti-isomorphisms, character modules and self-dual codes over non-commutative rings, Int. J. Inf. Coding Theory 1 (2010), no. 4, 429–444. MR 2772908 (2011m:94134), DOI 10.1504/IJICOT.2010.032867 – reference: Audrey Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003), DOI 10.1017/CBO9780511626265 – reference: Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034), DOI 10.1016/S0019-3577(97)83350-2 – reference: V. A. Zinov′ev and T. Èrikson, Fourier-invariant pairs of partitions of finite abelian groups, and association schemes, Problemy Peredachi Informatsii 45 (2009), no. 3, 33–44 (Russian, with Russian summary); English transl., Probl. Inf. Transm. 45 (2009), no. 3, 221–231. MR 2590742 (2010k:94008), DOI 10.1134/S003294600903003X – reference: Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979 (26 \#2519) – reference: V. A. Zinov′ev and T. Èrikson, On Fourier-invariant partitions of finite abelian groups and on the MacWilliams identity for group codes, Problemy Peredachi Informatsii 32 (1996), no. 1, 137–143 (Russian, with Russian summary); English transl., Problems Inform. Transmission 32 (1996), no. 1, 117–122. MR 1384939 (97m:20062) – reference: T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001), DOI 10.1007/978-1-4612-0525-8 – reference: Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual codes and invariant theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066) – reference: A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The Z4\textbf {Z}_4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046 (95k:94030), DOI 10.1109/18.312154 – reference: I. Konstantinesku and V. Khaĭze, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii 33 (1997), no. 3, 22–28 (Russian, with Russian summary); English transl., Problems Inform. Transmission 33 (1997), no. 3, 208–213 (1998). MR 1476368 (99a:94058) – reference: Heide Gluesing-Luerssen, Partitions of Frobenius rings induced by the homogeneous weight, Adv. Math. Commun. 8 (2014), no. 2, 191–207. MR 3209298, DOI 10.3934/amc.2014.8.191 – reference: Thomas Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415. MR 1831096 (2002b:16033), DOI 10.1007/PL00000451 – reference: Thomas Honold and Ivan Landjev, MacWilliams identities for linear codes over finite Frobenius rings, Finite fields and applications (Augsburg, 1999) Springer, Berlin, 2001, pp. 276–292. MR 1849094 (2002i:94066) – reference: D. J. Benson, Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. MR 1644252 (99f:20001a) – reference: Eimear Byrne, Marcus Greferath, and Michael E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301. MR 2298938 (2008c:94053), DOI 10.1007/s10623-006-9035-4 – reference: Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033) |
| SSID | ssj0000402451 ssj0001524394 ssib056874659 |
| Score | 1.7839894 |
| Snippet | This expository article describes two uses of the Fourier transform of interest in algebraic coding theory: the MacWilliams
identities on weight enumerators of... |
| SourceID | proquest ams |
| SourceType | Publisher |
| StartPage | 1 |
| Title | Some Applications of the Fourier Transform in Algebraic Coding Theory |
| URI | https://www.ams.org/conm/642/12879/ http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4832030&ppg=16 |
| Volume | 642 |
| WOSCitedRecordID | wos000363917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZpt8PWy36yttvQYKeBiWzL-nHpYSVpYdDtkEJvRpKlEcictslK__w9SZaSpqcedjHGCEd-n_IkPb3vewh9FfD_cYSZoqKmKaiqTaEkLQulJNy7BiZ1FYpN8IsLcXUlf41GJ4kLc7fgfS_u7-X1f4UangHYnjr7BLjzS-EB3APocAXY4bqzIn4Ye405x4vf_iQ4JA-GULodGIiLeeBIPeCDhEJoizR3qcTX_WPj2tRssuT86nQ6VLebpaVuCJXE35sbeHOgx2Suf44llM1OLGFzSJQlY70kyTJrkuSNZ0k5oV7si217UhaFsh55ZSJ9GiPs72GIT6GRjxbATk1u5qB07l7uyGKHiXby_ZSC4wF31DYttLi-KXzVMH-6PpRQ2UN7nIOXe3Y2-Xn5I_mThglOkxp-ZI1Xnggc-H1D_2mS_Urfk4U9ydh3eAzdHYfOBine1aMpO6xDZq_QgeemYE8aga6_RiPbv0EvtzQl36KJBxBvA4iXDoOh8QAgzgDieY8zgDgCiCOA79DldDI7PS-GWhmFgk3kuqgVV1wwXXFlKyFsLZSRjnfUal52jLi609KJylCtZWOM08w1QrCaSCW4Y_V7tN8ve_sBYTASpVp0laaaMucUscLVTJGOckp0dYi-gCHacJi_amMSA2m9sVowVhuMdYi-JTPFhkOqsYn2WbXbgB49pfExerEZuR_R_vr2r_2Enpu79Xx1-3kYAf8A4j5lIA |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algebra+for+Secure+and+Reliable+Communication+Modeling&rft.atitle=Some+Applications+of+the+Fourier+Transform+in+Algebraic+Coding+Theory&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410186&rft.volume=642&rft_id=info:doi/10.1090%2Fconm%2F642%2F12879&rft.externalDBID=16&rft.externalDocID=EBC4832030_5_16 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4832030-l.jpg |

