Using Relational Similarity between Word Pairs for Latent Relational Search on the Web

Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Toky...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 196 - 199
Hlavní autori: Duc, Nguyen Tuan, Bollegala, Danushka, Ishizuka, Mitsuru
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2010
Predmet:
ISBN:9781424484829, 1424484820
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Tokyo is highly similar to that between France and Paris. We propose an approach for exploring and indexing word pairs to efficiently retrieve candidate answers for a latent relational search query. Representing relations between two words in a word pair by lexical patterns allows our search engine to achieve a high MRR and high precision for the top 1 ranked result. When evaluating with a Web corpus, the proposed method achieves an MRR of 0.963 and it retrieves correct answer in the top 1 for 95.0% of queries.
AbstractList Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Tokyo is highly similar to that between France and Paris. We propose an approach for exploring and indexing word pairs to efficiently retrieve candidate answers for a latent relational search query. Representing relations between two words in a word pair by lexical patterns allows our search engine to achieve a high MRR and high precision for the top 1 ranked result. When evaluating with a Web corpus, the proposed method achieves an MRR of 0.963 and it retrieves correct answer in the top 1 for 95.0% of queries.
Author Duc, Nguyen Tuan
Bollegala, Danushka
Ishizuka, Mitsuru
Author_xml – sequence: 1
  givenname: Nguyen Tuan
  surname: Duc
  fullname: Duc, Nguyen Tuan
  email: duc@mi.ci.i.u-tokyo.ac.jp
  organization: Univ. of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Danushka
  surname: Bollegala
  fullname: Bollegala, Danushka
  email: danushka@mi.ci.i.u-tokyo.ac.jp
  organization: Univ. of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Mitsuru
  surname: Ishizuka
  fullname: Ishizuka, Mitsuru
  email: ishizuka@i.u-tokyo.ac.jp
  organization: Univ. of Tokyo, Tokyo, Japan
BookMark eNpVj0tLAzEUhSMqqLVrF27yB6beZPJcluJjYEDR1i5LMnPHRqYZyQSk_9762Lg6fAe-A-eCnMQhIiFXDGaMgb1ZV0U1X844fBdKH5Gp1Qa0slIwy8TxDzPBhTDCcHtGpuP4DgCMcRDSnJPX1RjiG33G3uUwRNfTl7ALvUsh76nH_IkY6XpILX1yIY20GxKtXcaY_znoUrOlQ6R5i3SN_pKcdq4fcfqXE7K6u10uHor68b5azOvCcW5yYQ1IA8x3nqMHiyXX3LSNaVsvOymbw0VfdkzL1hkuwGthm7LUiruDA21TTsj1725AxM1HCjuX9hupmOJKlV-3dlPx
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2010.167
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769541914
0769541917
EndPage 199
ExternalDocumentID 5616266
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a228t-9805801bfb2eb09e32728dc8ddb5f55c109b3f175da8240b749c33762a1bf0dc3
IEDL.DBID RIE
ISBN 9781424484829
1424484820
IngestDate Wed Sep 03 07:11:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a228t-9805801bfb2eb09e32728dc8ddb5f55c109b3f175da8240b749c33762a1bf0dc3
PageCount 4
ParticipantIDs ieee_primary_5616266
PublicationCentury 2000
PublicationDate 2010-08
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08
PublicationDecade 2010
PublicationTitle 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001120458
ssj0000452489
Score 1.5357966
Snippet Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to...
SourceID ieee
SourceType Publisher
StartPage 196
SubjectTerms analogical search
Clustering algorithms
Companies
Filters
Frequency measurement
Indexes
latent relational search
Logic gates
Pattern clustering
relational similarity
Search engines
Semantics
Vectors
Title Using Relational Similarity between Word Pairs for Latent Relational Search on the Web
URI https://ieeexplore.ieee.org/document/5616266
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8eCpaiu-2YNHYze7m-7mKGKxIKVgtb2V7CNQ0FRq6u93dpNUCl685cFCmLD7zeObbwBuhJVGGmEibpiOhOZ4DibCB64xH1CWU2ryMGxCjsdqPk8nLbjd9sI45wL5zN35y1DLtyuz8amyPmI9-t-DPdiTUla9Wtt8ipcGF7VyesivxF5oXTW9XEog1DUST_V9Wkv9xDTtz0bR6H5aUb3iwe6slQA1w87_PvIQer89e2SyRaMjaLniGDrN0AZS7-EuvAWSAGlIcNk7eVl-LDG-RXec1KwtMsOQlEx8qYegU0ue0SEtyp01YYOQVUHQgSQzp3vwOnycPjxF9XCFKGNMlVGqaILopHPNnKap40wyZY2yVid5khg0iuY5Ohc2U4j6WorUcDyNWIZrqDX8BNrFqnCnQPBN7DAO5cLLnjOTKS08FcvxTOeOpmfQ9WZafFb6GYvaQud_P76Ag6pC70l2l9Au1xt3Bfvmu1x-ra_DT_8BcR6m1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKejT1E28mwcfrUuTdE0fRRwbzjFwur2NJk1hMDuZnb_fk7SdDHzxrRcC5dDkO5fvfAfgViShDrXQHtdMeUJxPAcDYQNXn3coSynVqRs2EQ6HcjqNRjW42_TCGGMc-czc20tXy0-Wem1TZW3EevS_OzuwGwjB_KJba5NRseLgotROdxkW30qty6qbSwoEu0rkqbyPSrEfn0btSd_rP4wLspff2Z624sCm2_jfZx5C67drj4w2eHQENZMdQ6Ma20DKXdyEd0cTIBUNLl6Q1_nHHCNcdMhJydsiEwxKycgWewi6tWSALmmWb61xW4QsM4IuJJkY1YK37tP4seeV4xW8mDGZe5GkAeKTShUzikaGs5DJRMskUUEaBBqNoniK7kUSS8R9FYpIczyPWIxraKL5CdSzZWZOgeAb32AkyoUVPmc6lkpYMpbhsUoNjc6gac00-ywUNGalhc7_fnwD-73xy2A26A-fL-CgqNdbyt0l1PPV2lzBnv7O51-ra_cD_ABTGKod
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Using+Relational+Similarity+between+Word+Pairs+for+Latent+Relational+Search+on+the+Web&rft.au=Duc%2C+Nguyen+Tuan&rft.au=Bollegala%2C+Danushka&rft.au=Ishizuka%2C+Mitsuru&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=196&rft.epage=199&rft_id=info:doi/10.1109%2FWI-IAT.2010.167&rft.externalDocID=5616266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true