Using Relational Similarity between Word Pairs for Latent Relational Search on the Web
Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Toky...
Uložené v:
| Vydané v: | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 196 - 199 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.08.2010
|
| Predmet: | |
| ISBN: | 9781424484829, 1424484820 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Tokyo is highly similar to that between France and Paris. We propose an approach for exploring and indexing word pairs to efficiently retrieve candidate answers for a latent relational search query. Representing relations between two words in a word pair by lexical patterns allows our search engine to achieve a high MRR and high precision for the top 1 ranked result. When evaluating with a Web corpus, the proposed method achieves an MRR of 0.963 and it retrieves correct answer in the top 1 for 95.0% of queries. |
|---|---|
| AbstractList | Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to return the word Paris as an answer to the question mark (?) in the query {(Japan, Tokyo), (France, ?)} because the relation between Japan and Tokyo is highly similar to that between France and Paris. We propose an approach for exploring and indexing word pairs to efficiently retrieve candidate answers for a latent relational search query. Representing relations between two words in a word pair by lexical patterns allows our search engine to achieve a high MRR and high precision for the top 1 ranked result. When evaluating with a Web corpus, the proposed method achieves an MRR of 0.963 and it retrieves correct answer in the top 1 for 95.0% of queries. |
| Author | Duc, Nguyen Tuan Bollegala, Danushka Ishizuka, Mitsuru |
| Author_xml | – sequence: 1 givenname: Nguyen Tuan surname: Duc fullname: Duc, Nguyen Tuan email: duc@mi.ci.i.u-tokyo.ac.jp organization: Univ. of Tokyo, Tokyo, Japan – sequence: 2 givenname: Danushka surname: Bollegala fullname: Bollegala, Danushka email: danushka@mi.ci.i.u-tokyo.ac.jp organization: Univ. of Tokyo, Tokyo, Japan – sequence: 3 givenname: Mitsuru surname: Ishizuka fullname: Ishizuka, Mitsuru email: ishizuka@i.u-tokyo.ac.jp organization: Univ. of Tokyo, Tokyo, Japan |
| BookMark | eNpVj0tLAzEUhSMqqLVrF27yB6beZPJcluJjYEDR1i5LMnPHRqYZyQSk_9762Lg6fAe-A-eCnMQhIiFXDGaMgb1ZV0U1X844fBdKH5Gp1Qa0slIwy8TxDzPBhTDCcHtGpuP4DgCMcRDSnJPX1RjiG33G3uUwRNfTl7ALvUsh76nH_IkY6XpILX1yIY20GxKtXcaY_znoUrOlQ6R5i3SN_pKcdq4fcfqXE7K6u10uHor68b5azOvCcW5yYQ1IA8x3nqMHiyXX3LSNaVsvOymbw0VfdkzL1hkuwGthm7LUiruDA21TTsj1725AxM1HCjuX9hupmOJKlV-3dlPx |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WI-IAT.2010.167 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9780769541914 0769541917 |
| EndPage | 199 |
| ExternalDocumentID | 5616266 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-a228t-9805801bfb2eb09e32728dc8ddb5f55c109b3f175da8240b749c33762a1bf0dc3 |
| IEDL.DBID | RIE |
| ISBN | 9781424484829 1424484820 |
| IngestDate | Wed Sep 03 07:11:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a228t-9805801bfb2eb09e32728dc8ddb5f55c109b3f175da8240b749c33762a1bf0dc3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5616266 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-08 |
| PublicationDateYYYYMMDD | 2010-08-01 |
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-08 |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology |
| PublicationTitleAbbrev | wi-iat |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001120458 ssj0000452489 |
| Score | 1.5357966 |
| Snippet | Latent relational search is a new search paradigm based on the degree of analogy between two word pairs. A latent relational search engine is expected to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 196 |
| SubjectTerms | analogical search Clustering algorithms Companies Filters Frequency measurement Indexes latent relational search Logic gates Pattern clustering relational similarity Search engines Semantics Vectors |
| Title | Using Relational Similarity between Word Pairs for Latent Relational Search on the Web |
| URI | https://ieeexplore.ieee.org/document/5616266 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8eCpaiu-2YNHYze7m-7mKGKxIKVgtb2V7CNQ0FRq6u93dpNUCl685cFCmLD7zeObbwBuhJVGGmEibpiOhOZ4DibCB64xH1CWU2ryMGxCjsdqPk8nLbjd9sI45wL5zN35y1DLtyuz8amyPmI9-t-DPdiTUla9Wtt8ipcGF7VyesivxF5oXTW9XEog1DUST_V9Wkv9xDTtz0bR6H5aUb3iwe6slQA1w87_PvIQer89e2SyRaMjaLniGDrN0AZS7-EuvAWSAGlIcNk7eVl-LDG-RXec1KwtMsOQlEx8qYegU0ue0SEtyp01YYOQVUHQgSQzp3vwOnycPjxF9XCFKGNMlVGqaILopHPNnKap40wyZY2yVid5khg0iuY5Ohc2U4j6WorUcDyNWIZrqDX8BNrFqnCnQPBN7DAO5cLLnjOTKS08FcvxTOeOpmfQ9WZafFb6GYvaQud_P76Ag6pC70l2l9Au1xt3Bfvmu1x-ra_DT_8BcR6m1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKejT1E28mwcfrUuTdE0fRRwbzjFwur2NJk1hMDuZnb_fk7SdDHzxrRcC5dDkO5fvfAfgViShDrXQHtdMeUJxPAcDYQNXn3coSynVqRs2EQ6HcjqNRjW42_TCGGMc-czc20tXy0-Wem1TZW3EevS_OzuwGwjB_KJba5NRseLgotROdxkW30qty6qbSwoEu0rkqbyPSrEfn0btSd_rP4wLspff2Z624sCm2_jfZx5C67drj4w2eHQENZMdQ6Ma20DKXdyEd0cTIBUNLl6Q1_nHHCNcdMhJydsiEwxKycgWewi6tWSALmmWb61xW4QsM4IuJJkY1YK37tP4seeV4xW8mDGZe5GkAeKTShUzikaGs5DJRMskUUEaBBqNoniK7kUSS8R9FYpIczyPWIxraKL5CdSzZWZOgeAb32AkyoUVPmc6lkpYMpbhsUoNjc6gac00-ywUNGalhc7_fnwD-73xy2A26A-fL-CgqNdbyt0l1PPV2lzBnv7O51-ra_cD_ABTGKod |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Using+Relational+Similarity+between+Word+Pairs+for+Latent+Relational+Search+on+the+Web&rft.au=Duc%2C+Nguyen+Tuan&rft.au=Bollegala%2C+Danushka&rft.au=Ishizuka%2C+Mitsuru&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=196&rft.epage=199&rft_id=info:doi/10.1109%2FWI-IAT.2010.167&rft.externalDocID=5616266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true |

