Rewriting modulo symmetric monoidal structure

String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is pla...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 710 - 719
Hlavní autori: Bonchi, Filippo, Gadducci, Fabio, Kissinger, Aleks, Sobociński, Paweł, Zanasi, Fabio
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 05.07.2016
Edícia:ACM Conferences
Predmet:
ISBN:9781450343916, 1450343910
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure. We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids.
AbstractList String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure. We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids.
Author Gadducci, Fabio
Bonchi, Filippo
Sobociński, Paweł
Kissinger, Aleks
Zanasi, Fabio
Author_xml – sequence: 1
  givenname: Filippo
  surname: Bonchi
  fullname: Bonchi, Filippo
  email: filippo.bonchi@gmail.com
  organization: CNRS, ENS Lyon
– sequence: 2
  givenname: Fabio
  surname: Gadducci
  fullname: Gadducci, Fabio
  email: gadducci@di.unipi.it
  organization: U. Pisa
– sequence: 3
  givenname: Aleks
  surname: Kissinger
  fullname: Kissinger, Aleks
  email: aleks@cs.ru.nl
  organization: Radboud U. Nijmegen
– sequence: 4
  givenname: Paweł
  surname: Sobociński
  fullname: Sobociński, Paweł
  email: ps@ecs.soton.ac.uk
  organization: U. Southampton
– sequence: 5
  givenname: Fabio
  surname: Zanasi
  fullname: Zanasi, Fabio
  email: fzanasi@cs.ru.nl
  organization: Radboud U. Nijmegen
BookMark eNqNj01LxDAURQMqqGPXbrt00_pePppmKYM6woAgug6vaSLVtoGmRfz3VuwPcHXh3sOFc8lOxzh6xq4RSkSpbrkRQmlVrqkEVicsM7peBxBSGKzOWZbSBwBw1LUBvGDFi_-aurkb3_Mhtksf8_Q9DH6eOrcWY-xa6vM0T4ubl8lfsbNAffLZljv29nD_uj8Ux-fHp_3dsSDO9VwEDkIBDy2Ra5Fk41wFRlacgtMgGg0OvOYkKiUk1rXkLcqAXmsfGjIkduzm75fcYJsYP5NFsL-GdjO0m-GKlv9EbTN1PogfI_tTaA
ContentType Conference Proceeding
Copyright 2016 ACM
Copyright_xml – notice: 2016 ACM
DOI 10.1145/2933575.2935316
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 719
GroupedDBID 6IE
6IF
6IG
6IL
6IN
AAJGR
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IJVOP
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-a227t-f203502fdaacd1a4bcc609462afc703b70c0e72a3653418842d14f1e77efba9a3
ISBN 9781450343916
1450343910
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387609200072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 31 06:49:57 EST 2024
Wed Jan 31 06:44:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel OpenURL
MeetingName LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science
MergedId FETCHMERGED-LOGICAL-a227t-f203502fdaacd1a4bcc609462afc703b70c0e72a3653418842d14f1e77efba9a3
PageCount 10
ParticipantIDs acm_books_10_1145_2933575_2935316
acm_books_10_1145_2933575_2935316_brief
PublicationCentury 2000
PublicationDate 20160705
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 20160705
  day: 05
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationYear 2016
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002178901
Score 2.2677567
Snippet String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer...
SourceID acm
SourceType Publisher
StartPage 710
SubjectTerms Theory of computation -- Design and analysis of algorithms
Title Rewriting modulo symmetric monoidal structure
WOSCitedRecordID wos000387609200072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBab0ENPfaU0bRpcaOhhceuXLPkYloZAumFp0pKb0bMsie1Qr_P49xnJstYJgbaHXrzesZGxvtF4JM03g9BHEmvOYJocJpaSozkJC5GxMKI6ZzmNJLYMuZ_fyPExPTsrFpNJN3Bhri5IXdObm-Lyv0INMgDbUGf_AW7fKAjgHECHI8AOxwce8aMfn4UXtsP-fxq3q6lLpL8_m0PTZoo3PbmtTMhWV5kNA1NzWfQUwL7MwzDqxzr1XV2bHEj1L1NAp7topu1tVZmSXAIEdbOUPfmkE0Oekj4QsRa2cvD0wKzdXDY-5AeMXidEf4nxpb9wBMpgVxsdA-fc-_0nDQdl2pvhPZq5gtsLdq2soLe2potVCxo2H5EZ761txLmNg8UjbZzfm-7GGY5SSxUemVziwmKV-1c8_mHITA4N8G1S8E8_wy_YnnwDbRAS96Q_vzAHczQKTpIlAbrH-dxgw-NdjigQfHnQpHFyRDVyUU6fo631-wZrJXiBJqp-iZ4NsAYO1lco9GgGPZqBRzMY0Aw8mlvox8HX09lh6IpnhCxJyCrUidkzTrRkTMiYZVyIHKbyecK0ACvPSSQiRRKW5hgcGUqzRMaZjhUhCkZvwdLXaLNuavUGBUxjJYsi4VgV0A6nhv2BFScSU8ql3EYf4J1LMwbasie649L1S-n6ZRt9-uM9JQcN0W__orV36OlaXXbQJvSFeo-eiKvVsv29a_G8Aw6QXmM
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Rewriting+modulo+symmetric+monoidal+structure&rft.au=Bonchi%2C+Filippo&rft.au=Gadducci%2C+Fabio&rft.au=Kissinger%2C+Aleks&rft.au=Soboci%C5%84ski%2C+Pawe%C5%82&rft.series=ACM+Conferences&rft.date=2016-07-05&rft.pub=ACM&rft.isbn=9781450343916&rft.spage=710&rft.epage=719&rft_id=info:doi/10.1145%2F2933575.2935316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/sc.gif&client=summon&freeimage=true