Quantitative Algebraic Reasoning

We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b which we think of as saying that "a is approximately equal to b up to an error of ε ". We have 4 interesting examples where we have a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 700 - 709
Hlavní autoři: Mardare, Radu, Panangaden, Prakash, Plotkin, Gordon
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 05.07.2016
Edice:ACM Conferences
Témata:
ISBN:9781450343916, 1450343910
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b which we think of as saying that "a is approximately equal to b up to an error of ε ". We have 4 interesting examples where we have a quantitative equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; p-Wasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed barycentric algebras and the total variation metric from a variant of barycentric algebras.
AbstractList We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b which we think of as saying that "a is approximately equal to b up to an error of ε ". We have 4 interesting examples where we have a quantitative equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; p-Wasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed barycentric algebras and the total variation metric from a variant of barycentric algebras.
Author Panangaden, Prakash
Mardare, Radu
Plotkin, Gordon
Author_xml – sequence: 1
  givenname: Radu
  surname: Mardare
  fullname: Mardare, Radu
  email: mardare@cs.aau.dk
  organization: Aalborg University, Denmark
– sequence: 2
  givenname: Prakash
  surname: Panangaden
  fullname: Panangaden, Prakash
  email: prakash@cs.mcgill.ca
  organization: McGill University, Canada
– sequence: 3
  givenname: Gordon
  surname: Plotkin
  fullname: Plotkin, Gordon
  email: gdp@inf.ed.ac.uk
  organization: University of Edinburgh, UK
BookMark eNqNj0tLAzEUhQMqqHXWbmfpZsbcPJpkWYpaoSCWug53kpsSrTPQjP5-R5wf4OocOA_4rtl5P_TE2C3wFkDpe-Gk1Ea3kyoN9oxVztgp4FJJB8tLVpXyzjkXYKzjcMXq1y_sxzzimL-pXh0P1J0wh3pHWIY-94cbdpHwWKiadcHeHh_2602zfXl6Xq-2DQphxga1VRSV04HsMiptEkJn0mScjQKCk1oSOdtRwESGkxJIcWoYSAJ0lAvW_v1i-PTdMHwUD9z_QvkZys9QvjtlStPg7p8D-QPSk052
ContentType Conference Proceeding
Copyright 2016 ACM
Copyright_xml – notice: 2016 ACM
DOI 10.1145/2933575.2934518
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 709
GroupedDBID 6IE
6IF
6IG
6IL
6IN
AAJGR
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IJVOP
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-a227t-a584ed495ce86d457fa1b7f45798d21c9353ee98becafe70e42aedb7f71f215d3
ISBN 9781450343916
1450343910
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387609200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 31 06:45:21 EST 2024
Wed Jan 31 06:44:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel OpenURL
MeetingName LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science
MergedId FETCHMERGED-LOGICAL-a227t-a584ed495ce86d457fa1b7f45798d21c9353ee98becafe70e42aedb7f71f215d3
PageCount 10
ParticipantIDs acm_books_10_1145_2933575_2934518_brief
acm_books_10_1145_2933575_2934518
PublicationCentury 2000
PublicationDate 20160705
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 20160705
  day: 05
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationYear 2016
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002178901
Score 2.3662517
Snippet We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b...
SourceID acm
SourceType Publisher
StartPage 700
SubjectTerms Theory of computation
Theory of computation -- Logic
Theory of computation -- Models of computation
Theory of computation -- Models of computation -- Computability
Title Quantitative Algebraic Reasoning
WOSCitedRecordID wos000387609200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT4MwFG_c4sGT33F-BRMTDwtKodByXBY_LjPzK9mNdFCMcWMGmJn_va-lA7YsUQ9egDTQhv5e2_de-3sPoXMa-XHoWwQGEvFMQhRZmdhmOIT5UjBf2CRWySbo_T0bDPy-zraZqXQCNEnYbOZ__CvUUAZgS-rsH-AuK4UCeAbQ4Qqww3VJI165-PTLwmy-_-_gLG_rQPqdbg-qliZe--lrLI9sTcdyw0DmXA4LCmCR5mE-6usy9TDliSKlyeNGndGr3HQuDuJnyqtbubfTiBfO7UceTattqoQnr1zPdP2Uv_Os9Eb3R5Ncpwa7BYNYS4vsMZGBwPRq3MQFVwX21LFWtyZcvQXrFRPXchTztzaDUsuqLcZUxU5YMc8TGRIDVBUH1M1LuBMXswZqUIoLDl_pZwOTi4HOozh9urky1Ne8eR3yCQqulqqUOks4rmkcz1tor_pfo8J0G62JZAdtzlEyNEq7yKiDY5TgGCU4e-jl5vq5e2fq9Bcmt22amxx0QxGBARsK5kXEpTHHQxrDg88iG4e-4zpC-AxGIY8FtQSxuYjgDYpjUOQiZx81k0kiDpABH3mMOIxwzyGEM7nCSWVbDBnD3GItdAa_GUgpzoKCqu4GuisC3RUtdPHjO8EQhCI-_EVtR2ijkpBj1MzTqThB6-Fn_palpwrCb9rwRxY
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Quantitative+Algebraic+Reasoning&rft.au=Mardare%2C+Radu&rft.au=Panangaden%2C+Prakash&rft.au=Plotkin%2C+Gordon&rft.series=ACM+Conferences&rft.date=2016-07-05&rft.pub=ACM&rft.isbn=9781450343916&rft.spage=700&rft.epage=709&rft_id=info:doi/10.1145%2F2933575.2934518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/sc.gif&client=summon&freeimage=true