Semantics for probabilistic programming higher-order functions, continuous distributions, and soft constraints

We study the semantic foundation of expressive probabilistic programming languages, that support higher-order functions, continuous distributions, and soft constraints (such as Anglican, Church, and Venture). We define a metalanguage (an idealised version of Anglican) for probabilistic computation w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 525 - 534
Hlavní autoři: Staton, Sam, Yang, Hongseok, Wood, Frank, Heunen, Chris, Kammar, Ohad
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 05.07.2016
Edice:ACM Conferences
Témata:
ISBN:9781450343916, 1450343910
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the semantic foundation of expressive probabilistic programming languages, that support higher-order functions, continuous distributions, and soft constraints (such as Anglican, Church, and Venture). We define a metalanguage (an idealised version of Anglican) for probabilistic computation with the above features, develop both operational and denotational semantics, and prove soundness, adequacy, and termination. This involves measure theory, stochastic labelled transition systems, and functor categories, but admits intuitive computational readings, one of which views sampled random variables as dynamically allocated read-only variables. We apply our semantics to validate nontrivial equations underlying the correctness of certain compiler optimisations and inference algorithms such as sequential Monte Carlo simulation. The language enables defining probability distributions on higher-order functions, and we study their properties.
ISBN:9781450343916
1450343910
DOI:10.1145/2933575.2935313