Definability equals recognizability for graphs of bounded treewidth

We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognize...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 407 - 416
Hlavní autori: Bojańczyk, Mikołaj, Pilipczuk, Michał
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 05.07.2016
Edícia:ACM Conferences
Predmet:
ISBN:9781450343916, 1450343910
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle's theorem, the converse direction remained open.
ISBN:9781450343916
1450343910
DOI:10.1145/2933575.2934508