Definability equals recognizability for graphs of bounded treewidth
We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognize...
Uložené v:
| Vydané v: | Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 407 - 416 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY, USA
ACM
05.07.2016
|
| Edícia: | ACM Conferences |
| Predmet: | |
| ISBN: | 9781450343916, 1450343910 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle's theorem, the converse direction remained open. |
|---|---|
| ISBN: | 9781450343916 1450343910 |
| DOI: | 10.1145/2933575.2934508 |

