Solvability of Matrix-Exponential Equations

We consider a continuous analogue of (Babai et al. 1996)'s and (Cai et al. 2000)'s problem of solving multiplicative matrix equations. Given k + 1 square matrices A1, ..., Ak, C, all of the same dimension, whose entries are real algebraic, we examine the problem of deciding whether there e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science S. 798 - 806
Hauptverfasser: Ouaknine, Joel, Pouly, Amaury, Sousa-Pinto, Joao, Worrell, James
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 05.07.2016
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:9781450343916, 1450343910
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a continuous analogue of (Babai et al. 1996)'s and (Cai et al. 2000)'s problem of solving multiplicative matrix equations. Given k + 1 square matrices A1, ..., Ak, C, all of the same dimension, whose entries are real algebraic, we examine the problem of deciding whether there exist non-negative reals t1, ..., tk such that We show that this problem is undecidable in general, but decidable under the assumption that the matrices A1, ..., Ak commute. Our results have applications to reachability problems for linear hybrid automata. Our decidability proof relies on a number of theorems from algebraic and transcendental number theory, most notably those of Baker, Kronecker, Lindemann, and Masser, as well as some useful geometric and linear-algebraic results, including the Minkowski-Weyl theorem and a new (to the best of our knowledge) result about the uniqueness of strictly upper triangular matrix logarithms of upper unitriangular matrices. On the other hand, our undecidability result is shown by reduction from Hilbert's Tenth Problem.
AbstractList We consider a continuous analogue of (Babai et al. 1996)'s and (Cai et al. 2000)'s problem of solving multiplicative matrix equations. Given k + 1 square matrices A1, ..., Ak, C, all of the same dimension, whose entries are real algebraic, we examine the problem of deciding whether there exist non-negative reals t1, ..., tk such that We show that this problem is undecidable in general, but decidable under the assumption that the matrices A1, ..., Ak commute. Our results have applications to reachability problems for linear hybrid automata. Our decidability proof relies on a number of theorems from algebraic and transcendental number theory, most notably those of Baker, Kronecker, Lindemann, and Masser, as well as some useful geometric and linear-algebraic results, including the Minkowski-Weyl theorem and a new (to the best of our knowledge) result about the uniqueness of strictly upper triangular matrix logarithms of upper unitriangular matrices. On the other hand, our undecidability result is shown by reduction from Hilbert's Tenth Problem.
Author Sousa-Pinto, Joao
Pouly, Amaury
Ouaknine, Joel
Worrell, James
Author_xml – sequence: 1
  givenname: Joel
  surname: Ouaknine
  fullname: Ouaknine, Joel
  email: joel@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Amaury
  surname: Pouly
  fullname: Pouly, Amaury
  email: amaury.pouly@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 3
  givenname: Joao
  surname: Sousa-Pinto
  fullname: Sousa-Pinto, Joao
  email: jspinto@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 4
  givenname: James
  surname: Worrell
  fullname: Worrell, James
  email: jbw@cs.ox.ac.uk
  organization: University of Oxford
BookMark eNqNj8FKxDAURQMqqGPXbrsUpPW9pMlrljLUURhxoa5DkjYQrY1Oq4x_b8V-gKu7uJfDPafscEhDx9g5QolYySuuhZAkyzkrKeoDlmmq5wJEJTSqY5aN4wsAcKRaA56wy8fUf1kX-zh95ynk93baxX3R7N9n8DBF2-fNx6edYhrGM3YUbD922ZIr9nzTPK1vi-3D5m59vS0s5zQV6GQLAYlICHDgvNNe1eDJe0IdWuWD9uhJSQmhIse1wrajFpEQ7Xx1xS7-uNa_GZfS62gQzK-fWfzM4jdPy39OjdvFLogftstRug
ContentType Conference Proceeding
Copyright 2016 Owner/Author
Copyright_xml – notice: 2016 Owner/Author
DOI 10.1145/2933575.2934538
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 806
GroupedDBID 6IE
6IF
6IG
6IL
6IN
AAJGR
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IJVOP
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-a227t-1b5d0f1777330b0bcb9c680c7cc719fd6cf9c1c76550f47b2961de7d11711a503
ISBN 9781450343916
1450343910
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387609200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 31 06:44:04 EST 2024
Wed Jan 31 06:45:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords matrix logarithms
exponential matrices
commuting matrices
matrix reachability
hybrid automata
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MeetingName LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science
MergedId FETCHMERGED-LOGICAL-a227t-1b5d0f1777330b0bcb9c680c7cc719fd6cf9c1c76550f47b2961de7d11711a503
PageCount 9
ParticipantIDs acm_books_10_1145_2933575_2934538_brief
acm_books_10_1145_2933575_2934538
PublicationCentury 2000
PublicationDate 20160705
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 20160705
  day: 05
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationYear 2016
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002178901
Score 2.0122957
Snippet We consider a continuous analogue of (Babai et al. 1996)'s and (Cai et al. 2000)'s problem of solving multiplicative matrix equations. Given k + 1 square...
SourceID acm
SourceType Publisher
StartPage 798
SubjectTerms Computing methodologies
Computing methodologies -- Symbolic and algebraic manipulation
Computing methodologies -- Symbolic and algebraic manipulation -- Symbolic and algebraic algorithms
Computing methodologies -- Symbolic and algebraic manipulation -- Symbolic and algebraic algorithms -- Linear algebra algorithms
Mathematics of computing
Mathematics of computing -- Mathematical analysis
Mathematics of computing -- Mathematical analysis -- Numerical analysis
Mathematics of computing -- Mathematical analysis -- Numerical analysis -- Computations on matrices
Title Solvability of Matrix-Exponential Equations
WOSCitedRecordID wos000387609200081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZN6KGnvlKavnCh0MPi1lpJHukYQkovGxY2hdyMJFuwtGunazts_n1Htux10kDbQy-yGYyE9I2lmdE8CPkgKKS55io2qeIxLxKIFc9FzKwBw5STOXddsQk4P5eXl2oZ3MbqrpwAlKXc7dTVf4UaaQi2D539B7jHTpGA7wg6tgg7tnck4nsPn-VIrIf7f0brZhYS6Z-cLrBrr-LNVjcb77LVbvyFga-5bPsQwL7Mw_DXT3lqVf247vN63_SuM812vYvPdldV6Z2OfIrin-3EBOiNt63-Xq7LYKkvRn-OZdX2Na5PfGKj0a6_qtpax8t12fQ3QpWuxmPD1xEJLjl6iFvxK1rUyFCLSeziLVMGTTu3VzFhvsUt7ZZykbAuMniyw0JftHo4rLt0BfecA9ynzEBRhqE4-gmfHDf2A3IAkPQxfqMdDlUyiTJRF_MXhhtTgQ3Dh5RQSPh8p0sv09jNRCK5eEKO9vON9pg_JQ-K8hl5PKAYBRSfk9kEvKhy0e_gRSN4R-Tbl7OL069xqJQR6_kcmpgakSeOAgBjiUmMNcqmMrFgLVDl8tQ6ZamFFPVRx8HMVUrzAnJKgVKN03xBDksc7SWJUip14bhjMnecaidFLiDhBarlTEstjsl7nHHmGb7O-qh2kYVVycKqHJOPf_wmM8gf7tVf9PaaPNozyxty2Gzb4i15aK-bdb1916H5Cz1mV8k
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Solvability+of+Matrix-Exponential+Equations&rft.au=Ouaknine%2C+Joel&rft.au=Pouly%2C+Amaury&rft.au=Sousa-Pinto%2C+Joao&rft.au=Worrell%2C+James&rft.series=ACM+Conferences&rft.date=2016-07-05&rft.pub=ACM&rft.isbn=9781450343916&rft.spage=798&rft.epage=806&rft_id=info:doi/10.1145%2F2933575.2934538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343916/sc.gif&client=summon&freeimage=true