A model hierarchy for predicting the flow in stirred tanks with physics-informed neural networks

This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within stirred tank reactors (STRs). We solve the two-dimensional stationary Navier-Stokes equations within a geometrically intricate domain and explore...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in Computational Science and Engineering Ročník 2; číslo 2; s. 91 - 129
Hlavní autori: Trávníková, Veronika, Wolff, Daniel, Dirkes, Nico, Elgeti, Stefanie, von Lieres, Eric, Behr, Marek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.06.2024
Predmet:
ISSN:2837-1739, 2837-1739
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within stirred tank reactors (STRs). We solve the two-dimensional stationary Navier-Stokes equations within a geometrically intricate domain and explore methodologies that allow us to integrate additional physical insights into the model. These approaches include imposing the Dirichlet boundary conditions (BCs) strongly and employing domain decomposition (DD), with both overlapping and non-overlapping subdomains. We adapt the Extended Physics-Informed Neural Network (XPINN) approach to solve different sets of equations in distinct subdomains based on the diverse flow characteristics present in each region. Our exploration results in a hierarchy of models spanning various levels of complexity, where the best models exhibit $ \ell_1 $ prediction errors of less than 1% for both pressure and velocity. To illustrate the reproducibility of our approach, we track the errors over repeated independent training runs of the best identified model and show its reliability. Subsequently, by incorporating the stirring rate as a parametric input, we develop a fast-to-evaluate model of the flow capable of interpolating across a wide range of Reynolds numbers. Although we exclusively restrict ourselves to STRs in this work, we conclude that the steps taken to obtain the presented model hierarchy can be transferred to other applications.
AbstractList This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within stirred tank reactors (STRs). We solve the two-dimensional stationary Navier-Stokes equations within a geometrically intricate domain and explore methodologies that allow us to integrate additional physical insights into the model. These approaches include imposing the Dirichlet boundary conditions (BCs) strongly and employing domain decomposition (DD), with both overlapping and non-overlapping subdomains. We adapt the Extended Physics-Informed Neural Network (XPINN) approach to solve different sets of equations in distinct subdomains based on the diverse flow characteristics present in each region. Our exploration results in a hierarchy of models spanning various levels of complexity, where the best models exhibit $ \ell_1 $ prediction errors of less than 1% for both pressure and velocity. To illustrate the reproducibility of our approach, we track the errors over repeated independent training runs of the best identified model and show its reliability. Subsequently, by incorporating the stirring rate as a parametric input, we develop a fast-to-evaluate model of the flow capable of interpolating across a wide range of Reynolds numbers. Although we exclusively restrict ourselves to STRs in this work, we conclude that the steps taken to obtain the presented model hierarchy can be transferred to other applications.
Author Wolff, Daniel
Elgeti, Stefanie
von Lieres, Eric
Trávníková, Veronika
Behr, Marek
Dirkes, Nico
Author_xml – sequence: 1
  givenname: Veronika
  surname: Trávníková
  fullname: Trávníková, Veronika
  email: travnikova@cats.rwth-aachen.de
  organization: Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
– sequence: 2
  givenname: Daniel
  surname: Wolff
  fullname: Wolff, Daniel
  email: d.wolff@unibw.de
  organization: Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
– sequence: 3
  givenname: Nico
  surname: Dirkes
  fullname: Dirkes, Nico
  email: dirkes@aices.rwth-aachen.de
  organization: Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
– sequence: 4
  givenname: Stefanie
  surname: Elgeti
  fullname: Elgeti, Stefanie
  email: stefanie.elgeti@tuwien.ac.at
  organization: Institute for Lightweight Design and Structural Biomechanics, TU Wien, Austria
– sequence: 5
  givenname: Eric
  surname: von Lieres
  fullname: von Lieres, Eric
  email: e.von.lieres@fz-juelich.de
  organization: Institute of Bio- and Geosciences 1: Biotechnology, Forschungszentrum Jülich, Germany
– sequence: 6
  givenname: Marek
  surname: Behr
  fullname: Behr, Marek
  email: behr@cats.rwth-aachen.de
  organization: Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
BookMark eNp1kE1LAzEYhINUsGpv_oBcBbfmazfJsRS_oOBFz2s2m7ixu0lJUkr_vVvag4ieZmCeeeGdSzDxwRsAbjCaU0nZvdLJzAkiDCF-BqZEUF5gTuXkh78As5Rcg0rKJBeVmIKPBRxCa3rYORNV1N0e2hDhJprW6ez8J8ydgbYPO-g8TNnFMYFZ-XWCO5c7uOn2yelUOD_2hjHzZhtVP0rehbhO1-Dcqj6Z2UmvwPvjw9vyuVi9Pr0sF6tCEcJ4ITESRDLcNrg0FWspL60RknAhJFKMYVIJLa1huLGy0hQ3XGFBBC5HUOuGXoG7410dQ0rR2HoT3aDivsaoPgxUHwaqTwONOPmFa5dVdsHnqFz_X-n2WFJuSPVX2EY_vvQ3-w1lzXnP
CitedBy_id crossref_primary_10_1039_D5RE00290G
crossref_primary_10_1016_j_ces_2025_121396
Cites_doi 10.4208/cicp.oa-2020-0164
10.1016/j.jcp.2020.110085
10.1016/0045-7825(92)90059-S
10.1007/s10915-022-01939-z
10.1007/s10409-021-01148-1
10.1016/j.cma.2019.112623
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2024.116979
10.3390/e24091254
10.1007/s10444-023-10065-9
10.1137/19M1274067
10.1063/5.0095270
10.1145/279232.279236
10.1142/S0218213020500098
10.1016/j.jcp.2021.110768
10.1016/j.neucom.2020.09.006
10.1137/20M1318043
10.1063/5.0180770
10.3390/w13040423
10.1016/j.commatsci.2020.110187
10.3389/fphy.2020.00042
10.1002/pamm.202300203
10.1038/s41592-020-0772-5
10.1016/j.jsv.2021.116196
10.1126/science.aaw4741
10.1177/0954410019890721
10.1016/j.cma.2019.112732
10.1021/acs.jpca.3c06265
10.1002/aic.690381003
10.1016/j.ces.2018.05.008
10.1016/j.jcp.2021.110683
10.1016/j.cma.2021.113741
10.1016/j.cam.2021.113887
10.1137/0916069
10.1016/j.jcp.2020.109951
10.1109/72.712178
10.1186/s40323-024-00265-3
10.1016/j.cma.2020.113028
10.1016/j.jcp.2022.111402
10.1016/j.cma.2022.115810
ContentType Journal Article
DBID RAN
AAYXX
CITATION
DOI 10.3934/acse.2024007
DatabaseName American Institute of Mathematical Sciences
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2837-1739
EndPage 129
ExternalDocumentID 10_3934_acse_2024007
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
RAN
AAYXX
CITATION
ID FETCH-LOGICAL-a2247-91082941db15e64d375fe89278890a441268c9fe41bf96c31b7a18281575fccb3
ISSN 2837-1739
IngestDate Tue Nov 18 21:14:53 EST 2025
Sat Nov 29 03:28:51 EST 2025
Thu Nov 28 18:39:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords stirred tank reactors
domain decomposition
Physics-informed neural networks
reduced order modeling
Navier-Stokes equations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2247-91082941db15e64d375fe89278890a441268c9fe41bf96c31b7a18281575fccb3
OpenAccessLink https://www.aimsciences.org/data/article/export-pdf?id=6641d962a6a5dc7138d1aa22
PageCount 39
ParticipantIDs crossref_primary_10_3934_acse_2024007
crossref_citationtrail_10_3934_acse_2024007
aims_journals_10_3934_acse_2024007
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in Computational Science and Engineering
PublicationTitleAbbrev ACSE
PublicationYear 2024
References E. Kharazmi, Z. Zhang and G. E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, 2019. arXiv: 1912.00873.
Lai Mylonas Nagarajaiah Chatzi (24) 2021; 508
S. Wang, S. Sankaran, H. Wang and P. Perdikaris, An expert's guide to training physics-informed neural networks, 2023. arXiv: 2308.08468.
B. Moseley, A. Markham and T. Nissen-Meyer, Solving the wave equation with physics-informed deep learning, 2020. arXiv: 2006.11894.
Dwivedi Parashar Srinivasan (10) 2021; 420
Rosseburg Fitschen Wutz Wucherpfennig Schlüter (33) 2018; 188
Yu Yan Guo (46) 2019; 233
Tillmann Hilger Hosters Elgeti (40) 2023; 23
Eivazi Tahani Schlatter Vinuesa (11) 2022; 34
Islam Thakur Mojumder Hasan (15) 2021; 188
Lu Meng Mao Karniadakis (26) 2021; 63
Shukla Jagtap Karniadakis (37) 2021; 447
Virtanen Gommers Oliphant Haberland Reddy Cournapeau Burovski Peterson Weckesser Bright van der Walt Brett Wilson Millman Mayorov Nelson Jones Kern Larson Carey Polat Feng Moore VanderPlas Laxalde Perktold Cimrman Henriksen Quintero Harris Archibald Ribeiro Pedregosa van Mulbregt (42) 2020; 17
Zhou Miwa Okamoto (47) 2024; 36
T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 2623-2631.
Cuomo Di Cola Giampaolo Rozza Raissi Piccialli (7) 2022; 92
Tezduyar Behr Liou (39) 1992; 94
Haghighat Raissi Moure Gomez Juanes (13) 2021; 379
Jagtap Mao Adams Karniadakis (18) 2022; 466
Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y. Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS'14, MIT Press, Cambridge, MA, USA, (2014), 2933-2941.
Cai Mao Wang Yin Karniadakis (5) 2021; 37
Cheng Zhang (6) 2021; 13
Dirkes Key Behr (9) 2024; 426
Sheng Yang (36) 2021; 428
Wang Teng Perdikaris (44) 2021; 43
Van Der Meer Oosterlee Borovykh (41) 2022; 405
Mojgani Balajewicz Hassanzadeh (27) 2023; 404
Sun Gao Pan Wang (38) 2020; 361
Raissi Perdikaris Karniadakis (31) 2019; 378
Byrd Lu Nocedal Zhu (4) 1995; 16
Lagari Tsoukalas Safarkhani Lagaris (22) 2020; 29
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and X. Zheng, TensorFlow: A system for large-scale machine learning, 2016. arXiv: 1605.08695.
Kissas Yang Hwuang Witschey Detre Perdikaris (21) 2020; 358
Sahin von Danwitz Popp (34) 2024; 11
Sahli Costabal Yang Perdikaris Hurtado Kuhl (35) 2020; 8
Moseley Markham Nissen-Meyer (29) 2023; 49
Li Feng (25) 2022; 24
C. Haringa, Through the Organisms Eyes, PhD thesis, Delft University of Technology, 2017.
Jin Cai Li Karniadakis (19) 2021; 426
Raissi Yazdani Karniadakis (32) 2020; 367
Adebar Keupp Emenike Kühlborn vom Dahl Möckel Smiatek (2) 2024; 128
Jagtap Karniadakis (16) 2020; 28
Psichogios Ungar (30) 1992; 38
Jagtap Kharazmi Karniadakis (17) 2020; 365
Wang Yu Perdikaris (45) 2022; 449
S. A. Faroughi, N. M. Pawar, C. Fernandes, M. Raissi, S. Das, N. K. Kalantari and S. K. Mahjour, Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics, Journal of Computing and Information Science in Engineering, 1-45.
Lagaris Likas Fotiadis (23) 1998; 9
Zhu Byrd Lu Nocedal (48) 1997; 23
References_xml – volume: 28
  start-page: 2002
  year: 2020
  end-page: 2041
  ident: 16
  article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
  doi: 10.4208/cicp.oa-2020-0164
– volume: 428
  start-page: 110085
  year: 2021
  ident: 36
  article-title: PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2020.110085
– volume: 94
  start-page: 339
  year: 1992
  end-page: 351
  ident: 39
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: Ⅰ. The concept and the preliminary numerical tests
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(92)90059-S
– volume: 92
  start-page: 88
  year: 2022
  ident: 7
  article-title: Scientific machine learning through physics–informed neural networks: Where we are and what's next
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-022-01939-z
– volume: 37
  start-page: 1727
  year: 2021
  end-page: 1738
  ident: 5
  article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/s10409-021-01148-1
– volume: 358
  start-page: 112623
  year: 2020
  ident: 21
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow mri data using physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112623
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: 31
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– volume: 426
  start-page: 116979
  year: 2024
  ident: 9
  article-title: Eulerian formulation of the tensor-based morphology equations for strain-based blood damage modeling
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2024.116979
– volume: 24
  start-page: 1254
  year: 2022
  ident: 25
  article-title: Dynamic weight strategy of physics-informed neural networks for the 2d navier–stokes equations
  publication-title: Entropy
  doi: 10.3390/e24091254
– reference: C. Haringa, Through the Organisms Eyes, PhD thesis, Delft University of Technology, 2017.
– volume: 49
  start-page: 62
  year: 2023
  ident: 29
  article-title: Finite basis physics-informed neural networks (FBPINNs): A scalable domain decomposition approach for solving differential equations
  publication-title: Advances in Computational Mathematics
  doi: 10.1007/s10444-023-10065-9
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: 26
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Review
  doi: 10.1137/19M1274067
– volume: 34
  start-page: 075117
  year: 2022
  ident: 11
  article-title: Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations
  publication-title: Physics of Fluids
  doi: 10.1063/5.0095270
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: 48
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/279232.279236
– volume: 29
  start-page: 2050009
  year: 2020
  ident: 22
  article-title: Systematic construction of neural forms for solving partial differential equations inside rectangular domains, subject to initial, boundary and interface conditions
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S0218213020500098
– volume: 449
  start-page: 110768
  year: 2022
  ident: 45
  article-title: When and why PINNs fail to train: A neural tangent kernel perspective
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2021.110768
– volume: 420
  start-page: 299
  year: 2021
  end-page: 316
  ident: 10
  article-title: Distributed physics informed neural network for data-efficient solution to partial differential equations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.006
– reference: B. Moseley, A. Markham and T. Nissen-Meyer, Solving the wave equation with physics-informed deep learning, 2020. arXiv: 2006.11894.
– volume: 43
  start-page: A3055
  year: 2021
  end-page: A3081
  ident: 44
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/20M1318043
– volume: 36
  start-page: 013615
  year: 2024
  ident: 47
  article-title: Advancing fluid dynamics simulations: A comprehensive approach to optimizing physics-informed neural networks
  publication-title: Physics of Fluids
  doi: 10.1063/5.0180770
– volume: 13
  start-page: 423
  year: 2021
  ident: 6
  article-title: Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems
  publication-title: Water
  doi: 10.3390/w13040423
– volume: 188
  start-page: 110187
  year: 2021
  ident: 15
  article-title: Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2020.110187
– volume: 8
  year: 2020
  ident: 35
  article-title: Physics-informed neural networks for cardiac activation mapping
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2020.00042
– volume: 23
  start-page: e202300203
  year: 2023
  ident: 40
  article-title: Shape-optimization of extrusion-dies via parameterized physics-informed neural networks
  publication-title: PAMM
  doi: 10.1002/pamm.202300203
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: 42
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-020-0772-5
– reference: E. Kharazmi, Z. Zhang and G. E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, 2019. arXiv: 1912.00873.
– volume: 508
  start-page: 116196
  year: 2021
  ident: 24
  article-title: Structural identification with physics-informed neural ordinary differential equations
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2021.116196
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: 32
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– reference: S. A. Faroughi, N. M. Pawar, C. Fernandes, M. Raissi, S. Das, N. K. Kalantari and S. K. Mahjour, Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics, Journal of Computing and Information Science in Engineering, 1-45.
– volume: 233
  start-page: 5896
  year: 2019
  end-page: 5912
  ident: 46
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
  doi: 10.1177/0954410019890721
– volume: 361
  start-page: 112732
  year: 2020
  ident: 38
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112732
– volume: 128
  start-page: 929
  year: 2024
  end-page: 944
  ident: 2
  article-title: Scientific deep machine learning concepts for the prediction of concentration profiles and chemical reaction kinetics: Consideration of reaction conditions
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/acs.jpca.3c06265
– volume: 38
  start-page: 1499
  year: 1992
  end-page: 1511
  ident: 30
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE Journal
  doi: 10.1002/aic.690381003
– volume: 188
  start-page: 208
  year: 2018
  end-page: 220
  ident: 33
  article-title: Hydrodynamic inhomogeneities in large scale stirred tanks – Influence on mixing time
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2018.05.008
– reference: T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 2623-2631.
– reference: S. Wang, S. Sankaran, H. Wang and P. Perdikaris, An expert's guide to training physics-informed neural networks, 2023. arXiv: 2308.08468.
– volume: 447
  start-page: 110683
  year: 2021
  ident: 37
  article-title: Parallel physics-informed neural networks via domain decomposition
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2021.110683
– volume: 379
  start-page: 113741
  year: 2021
  ident: 13
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113741
– reference: Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y. Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS'14, MIT Press, Cambridge, MA, USA, (2014), 2933-2941.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and X. Zheng, TensorFlow: A system for large-scale machine learning, 2016. arXiv: 1605.08695.
– volume: 405
  start-page: 113887
  year: 2022
  ident: 41
  article-title: Optimally weighted loss functions for solving PDEs with neural networks
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2021.113887
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: 4
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/0916069
– volume: 426
  start-page: 109951
  year: 2021
  ident: 19
  article-title: NSFnets (navier-stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2020.109951
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: 23
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712178
– volume: 11
  start-page: 11
  year: 2024
  ident: 34
  article-title: Solving Forward and Inverse Problems of Contact Mechanics Using Physics-Informed Neural Networks
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
  doi: 10.1186/s40323-024-00265-3
– volume: 365
  start-page: 113028
  year: 2020
  ident: 17
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113028
– volume: 466
  start-page: 111402
  year: 2022
  ident: 18
  article-title: Physics-informed neural networks for inverse problems in supersonic flows
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2022.111402
– volume: 404
  start-page: 115810
  year: 2023
  ident: 27
  article-title: Kolmogorov n–width and Lagrangian physics-informed neural networks: A causality-conforming manifold for convection-dominated PDEs
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2022.115810
SSID ssib053497868
ssib051265665
Score 1.9089391
Snippet This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within...
SourceID crossref
aims
SourceType Enrichment Source
Index Database
Publisher
StartPage 91
Title A model hierarchy for predicting the flow in stirred tanks with physics-informed neural networks
URI http://www.aimsciences.org/article/id/6641d962a6a5dc7138d1aa22
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2837-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051265665
  issn: 2837-1739
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4MAFgQAxvmQhOE0RtePE9rGCIS5MHIa0W6gdR6pa0iop3U772_denvOhCaRx4JJUlus2fj-_r7wPxt5Ll1Yu02DkOK0SJb1NnC9DUoYKDBCjnF7Ou2YT-uzMXFzY77PZZZ8Lc9joujZXV3b3X0kNY0BsTJ39B3IPi8IAfAaiwxXIDtc7EX5B3W1OsMk1PhpFZO4afCOz75Ojqs32El0dcMAbjEAHFXEdE93I19EmVFIVowNCV5qjpoDxdqrOLiiCoKXcQewP0fsWe56BfvlJzcPBUUBv6MWh7u6f19sDDXRxtwEL9q5HgbHdUO1IyocfdO9VsyYmh3Aeg1AwcS4GsFX4haljQ6oxAIv4H9blSYSmWkc9s5YTTMoJ46WWX1GEC3Ki3JYOqU0Vij7fYn1UDJ7V99h9qTOL7PDb9WnPiEAJQjV3YHRZin34urTK4U9REgUu-XG6IEj25epXO9FyJurK-WP2KNoZfEH4eMJmoX7Kfi54hw0-YIMDjfmIDQ7Y4IgNvqp5xAbvsMERG_w2Njhhg_fYeMZ-fDk9__Q1iS02kiXobhpEHeZWK1E6kYVclanOqmCs1MbY-RJUZZkbb6ughKts7lMBZxcsUiNAy6-8d-lzdlRv6_CCcReE9d7Y4DKvvHUmdyGXymVOmrkr7TF7hztTxKPSFmB-4vYVuH1F3L5jdtLvW-FjkXrslbL5y-wPw-wdFWf547yXd_npV-zhiMLX7Gjf_A5v2AN_2K_a5m2Hjxs1LoW5
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+hierarchy+for+predicting+the+flow+in+stirred+tanks+with+physics-informed+neural+networks&rft.jtitle=Advances+in+Computational+Science+and+Engineering&rft.au=Tr%C3%A1vn%C3%ADkov%C3%A1%2C+Veronika&rft.au=Wolff%2C+Daniel&rft.au=Dirkes%2C+Nico&rft.au=Elgeti%2C+Stefanie&rft.date=2024-06-01&rft.issn=2837-1739&rft.volume=2&rft.issue=2&rft.spage=91&rft.epage=129&rft_id=info:doi/10.3934%2Facse.2024007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-1739&client=summon