Simulating two-dimensional optimal control problem of fractional partial differential equations

In this work, a novel method for simulating the fractional two-dimensional linear-quadratic optimal control problem of fractional partial differential equations is introduced. Here, the fractional two-dimensional optimal control problems are transformed into a quadratic programing framework by which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in Computational Science and Engineering Ročník 1; číslo 3; s. 271 - 297
Hlavný autor: Malmir, Iman
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.09.2023
Predmet:
ISSN:2837-1739, 2837-1739
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, a novel method for simulating the fractional two-dimensional linear-quadratic optimal control problem of fractional partial differential equations is introduced. Here, the fractional two-dimensional optimal control problems are transformed into a quadratic programing framework by which we can use many quadratic programming solvers. There is no need to find the optimality conditions and no need to use any multiplier. The optimal control problem involves a two-dimensional performance index and the control of problem depends on both spatial and temporal variables. Some illustrative examples with complicated and challenging situations are investigated.
AbstractList In this work, a novel method for simulating the fractional two-dimensional linear-quadratic optimal control problem of fractional partial differential equations is introduced. Here, the fractional two-dimensional optimal control problems are transformed into a quadratic programing framework by which we can use many quadratic programming solvers. There is no need to find the optimality conditions and no need to use any multiplier. The optimal control problem involves a two-dimensional performance index and the control of problem depends on both spatial and temporal variables. Some illustrative examples with complicated and challenging situations are investigated.
Author Malmir, Iman
Author_xml – sequence: 1
  givenname: Iman
  surname: Malmir
  fullname: Malmir, Iman
  email: iman.malmir@outlook.com
BookMark eNp1kE1LxDAQhoOs4LruzR_Qq2DXNGmT9iiLrsKCB_Uc8imRNqlJivjvzX4cRPT0zjDPDO-852DmvNMAXFZwhTtc33AZ9QpBhGGFTsActZiWFcXd7Ed9BpYxWgEbXHe0Je0csGc7TD1P1r0V6dOXyg7aResd7ws_Jjtkld6l4PtiDF70eii8KUzgMh2okYdksyprjA7a7Rv9MfHdPF6AU8P7qJdHXYDX-7uX9UO5fdo8rm-3JUeoRqXBElHMITG0apuu05CSWghMYNfKbN8ojShXRAsqlEENJ0ISBVVTw0bTDCzA9eGuDD7GoA0bQzYfvlgF2S4ftsuHHfPJOPqFS5v2jlPgtv9v6eqwxO0Q2bufQv4__s1-A6pTey8
CitedBy_id crossref_primary_10_1016_j_isatra_2024_08_003
crossref_primary_10_1007_s11227_023_05732_z
Cites_doi 10.1080/00207179.2016.1178807
10.1515/jaa-2020-2011
10.1002/oca.2861
10.22034/cmde.2021.37458.1669
10.3934/math.20221061
10.4310/PAMQ.2022.v18.n3.a7
10.19139/soic-2310-5070-1228
10.1016/j.apm.2019.12.011
10.2298/TSCI180825254Y
10.3934/naco.2021007
10.1007/s00211-022-01290-3
10.1016/bs.hna.2020.10.003
10.1137/070679703
10.3934/naco.2020011
10.3390/math9212672
10.1177/1077546311408471
10.1109/TSMC.1981.4308749
10.1016/j.rico.2023.100251
10.1080/00207160.2017.1417591
10.1093/imamci/dnac031
ContentType Journal Article
CorporateAuthor Aerospace and Mechanical Engineering Group, Ronin Institute, Montclair, NJ 07043, USA
CorporateAuthor_xml – name: Aerospace and Mechanical Engineering Group, Ronin Institute, Montclair, NJ 07043, USA
DBID RAN
AAYXX
CITATION
DOI 10.3934/acse.2023012
DatabaseName American Institute of Mathematical Sciences (AIMS)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2837-1739
EndPage 297
ExternalDocumentID 10_3934_acse_2023012
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
RAN
AAYXX
CITATION
ID FETCH-LOGICAL-a2242-f3c273a06f718599e0764bb36098c283fde27ad6eb7bdf25a6bc6d0d5405e7283
ISSN 2837-1739
IngestDate Tue Nov 18 21:04:59 EST 2025
Sat Nov 29 03:28:51 EST 2025
Thu Nov 28 18:39:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords multi-order fractional two-dimensional optimal control
fractional Robin condition
numerical methods in engineering
Two-dimensional fractional optimal control
two-dimensional constrained optimal control of PDEs
state or control constrained optimization of partial differential equations
fractional partial differential equations
quadratic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2242-f3c273a06f718599e0764bb36098c283fde27ad6eb7bdf25a6bc6d0d5405e7283
OpenAccessLink https://www.aimsciences.org/data/article/export-pdf?id=64df3b35e2af3e5dae246167
PageCount 27
ParticipantIDs crossref_primary_10_3934_acse_2023012
crossref_citationtrail_10_3934_acse_2023012
aims_journals_10_3934_acse_2023012
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in Computational Science and Engineering
PublicationTitleAbbrev ACSE
PublicationYear 2023
References Adel Yildirim (1) 2022; 10
T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, 2014.
Li Zhou (20) 2018; 95
E. Kreyszig, H. Kreyszig and E. J. Norminton, Advanced Engineering Mathematics, John Wiley & Sons, 2011.
Soufivand Soltanian Mamehrashi (33) 2023; 40
I. Malmir, Novel closed-loop controllers for fractional linear quadratic time-varying systems, Numerical Algebra, Control and Optimization, 2022.
M. Sandberg, Approximation of Optimally Controlled Ordinary and Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, 2006.
Alshehry Amir Iqbal Shah Nonlaopon (2) 2022; 7
S. Guffey, Application of a numerical method and optimal control theory to a partial differential equation model for a bacterial infection in a chronic wound, ProQuest LLC, Ann Arbor, MI, (2021), 119pp.
R. Herzog, M. Heinkenschloss, D. Kalise, G. Stadler and E. Trélat, Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, Radon Series on Computational and Applied Mathematics, 29 (2022).
Mamehrashi Yousefi (23) 2017; 90
Hosseini Soltanian Mamehrashi (16) 2022; 18
Yang Ragulskis Tana (40) 2019; 23
I. Malmir, An efficient method for a variety of fractional time-delay optimal control problems with fractional performance indices, International Journal of Dynamics and Control, (2023).
Hintermüller Keil (15) 2021; 22
F. Ghomanjani, S. Noeiaghdam and S. Micula, Application of transcendental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022 (2022), Article ID 4303775.
Wang Chen (38) 2020; 81
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math., 112, American Mathematical Society, Providence, RI, 2010.
Veldman Zuazua (37) 2022; 151
Hasan Tangpong Agrawal (12) 2012; 18
Wang Nagurka (39) 1993; 1
Alvarez Cabrales Castro (4) 2021; 9
Malmir Sadati (24) 2020; 26
Malmir (28) 2021; 9
Dorf Bishop (9) 1981; 11
S. Mowlavi and S. Nabi, Optimal control of PDEs using physics-informed neural networks, Journal of Computational Physics, 473 (2023), Paper No. 111731, 22 pp.
U. Prüfert, Solving Optimal PDE Control Problems: Optimality Conditions, Algorithms and Model Reduction, PhD diss., Technische Universität Bergakademie Freiberg, 2016.
P. Kumar, V. S. Erturk, S. Tyagi, J. Banas and A. Manickam, A generalized Caputo-type fractional-order neuron model under the electromagnetic field, International Journal of Dynamics and Control, (2023), 1-14.
Malmir (25) 2023; 12
Datta Datta (8) 2020/2021; 12
Swarnakar (34) 2022; 12
Zhang Zhang (41) 2021; 11
Chen Yi Liu (6) 2008; 46
T. Cuchta, D. Poulsen and N. Wintz, Linear quadratic tracking with continuous conformable derivatives, European Journal of Control, 72 (2023), Paper No. 100808, 11 pp.
T. Kaczorek, Two-dimensional Linear Systems, Lect. Notes Control Inf. Sci., 68, Springer-Verlag, Berlin, 1985.
D. G. Zill and W. S. Wright, Advanced Engineering Mathematics, Jones & Bartlett Learning, 2014.
Thünen Leyffer Sager (35) 2022; 43
F. Ludovici, Numerical analysis of parabolic optimal control problems with restrictions on the state and its first derivative, PhD diss., 2017.
N. Altmüller, Model Predictive Control for Partial Differential Equations, Universitaet Bayreuth (Germany), 2014.
R. L. Herman, Introduction to Partial Differential Equations, North Carolina, NC, USA, 2015.
E. Madenci and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS, Springer US, 2015.
A. P. S. Selvadurai, Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson's Equation, Springer-Verlag, Berlin, 2000.
References_xml – volume: 90
  start-page: 314
  year: 2017
  end-page: 322
  ident: 23
  article-title: A numerical method for solving a nonlinear 2- D optimal control problem with the classical diffusion equation
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2016.1178807
– reference: I. Malmir, An efficient method for a variety of fractional time-delay optimal control problems with fractional performance indices, International Journal of Dynamics and Control, (2023).
– reference: T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, 2014.
– reference: I. Malmir, Novel closed-loop controllers for fractional linear quadratic time-varying systems, Numerical Algebra, Control and Optimization, 2022.
– volume: 26
  start-page: 131
  year: 2020
  end-page: 151
  ident: 24
  article-title: Transforming linear time-varying optimal control problems with quadratic criteria into quadratic programming ones via wavelets
  publication-title: Journal of Applied Analysis
  doi: 10.1515/jaa-2020-2011
– volume: 43
  start-page: 867
  year: 2022
  end-page: 883
  ident: 35
  article-title: State elimination for mixed-integer optimal control of partial differential equations by semigroup theory
  publication-title: Optim Control Appl Meth.
  doi: 10.1002/oca.2861
– volume: 10
  start-page: 338
  year: 2022
  end-page: 350
  ident: 1
  article-title: Studying the thermal analysis of rectangular cross section porous fin: A numerical approach
  publication-title: Computational Methods for Differential Equations
  doi: 10.22034/cmde.2021.37458.1669
– volume: 1
  start-page: 1
  year: 1993
  end-page: 6
  ident: 39
  article-title: A Chebyshev-based state representation for linear quadratic optimal control
  publication-title: Journal of dynamic systems, measurement, and control
– volume: 7
  start-page: 19325
  year: 2022
  end-page: 19343
  ident: 2
  article-title: On the solution of nonlinear fractional-order shock wave equation via analytical method
  publication-title: AIMS Mathematics
  doi: 10.3934/math.20221061
– reference: T. Cuchta, D. Poulsen and N. Wintz, Linear quadratic tracking with continuous conformable derivatives, European Journal of Control, 72 (2023), Paper No. 100808, 11 pp.
– volume: 18
  start-page: 1075
  year: 2022
  end-page: 1094
  ident: 16
  article-title: Solution of two-dimensional optimal control problem using Legendre Block-Pulse polynomial basis
  publication-title: Pure and Applied Mathematics Quarterly
  doi: 10.4310/PAMQ.2022.v18.n3.a7
– volume: 9
  start-page: 418
  year: 2021
  end-page: 434
  ident: 28
  article-title: A novel wavelet-based optimal linear quadratic tracker for time-varying systems with multiple delays
  publication-title: Statistics, Optimization & Information Computing
  doi: 10.19139/soic-2310-5070-1228
– volume: 81
  start-page: 159
  year: 2020
  end-page: 176
  ident: 38
  article-title: Shifted Legendre polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2019.12.011
– reference: M. Sandberg, Approximation of Optimally Controlled Ordinary and Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, 2006.
– volume: 23
  start-page: 3711
  year: 2019
  end-page: 3718
  ident: 40
  article-title: A new general fractional-order derivative with Rabotnov fractional-exponential kernel
  publication-title: Thermal science
  doi: 10.2298/TSCI180825254Y
– reference: N. Altmüller, Model Predictive Control for Partial Differential Equations, Universitaet Bayreuth (Germany), 2014.
– volume: 12
  start-page: 309
  year: 2022
  end-page: 320
  ident: 34
  article-title: Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system
  publication-title: Numerical Algebra, Control and Optimization
  doi: 10.3934/naco.2021007
– volume: 151
  start-page: 495
  year: 2022
  end-page: 549
  ident: 37
  article-title: A framework for randomized time-splitting in linear-quadratic optimal control
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-022-01290-3
– volume: 22
  start-page: 213
  year: 2021
  end-page: 270
  ident: 15
  article-title: Optimal control of geometric partial differential equations
  publication-title: Handbook of Numerical Analysis
  doi: 10.1016/bs.hna.2020.10.003
– reference: A. P. S. Selvadurai, Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson's Equation, Springer-Verlag, Berlin, 2000.
– volume: 46
  start-page: 2254
  year: 2008
  end-page: 2275
  ident: 6
  article-title: A Legendre–Galerkin spectral method for optimal control problems governed by elliptic equations
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/070679703
– volume: 11
  start-page: 1
  year: 2021
  end-page: 12
  ident: 41
  article-title: Fault-tolerant control against actuator failures for uncertain singular fractional order systems
  publication-title: Numerical Algebra, Control and Optimization
  doi: 10.3934/naco.2020011
– reference: F. Ghomanjani, S. Noeiaghdam and S. Micula, Application of transcendental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022 (2022), Article ID 4303775.
– reference: S. Guffey, Application of a numerical method and optimal control theory to a partial differential equation model for a bacterial infection in a chronic wound, ProQuest LLC, Ann Arbor, MI, (2021), 119pp.
– reference: R. Herzog, M. Heinkenschloss, D. Kalise, G. Stadler and E. Trélat, Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, Radon Series on Computational and Applied Mathematics, 29 (2022).
– reference: F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math., 112, American Mathematical Society, Providence, RI, 2010.
– volume: 9
  start-page: 2672
  year: 2021
  ident: 4
  article-title: Optimal control theory for a system of partial differential equations associated with stratified fluids
  publication-title: Mathematics
  doi: 10.3390/math9212672
– reference: E. Kreyszig, H. Kreyszig and E. J. Norminton, Advanced Engineering Mathematics, John Wiley & Sons, 2011.
– reference: D. G. Zill and W. S. Wright, Advanced Engineering Mathematics, Jones & Bartlett Learning, 2014.
– volume: 18
  start-page: 1506
  year: 2012
  end-page: 1525
  ident: 12
  article-title: Fractional optimal control of distributed systems in spherical and cylindrical coordinates
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546311408471
– volume: 11
  start-page: 580
  year: 1981
  ident: 9
  article-title: Modern control systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1981.4308749
– reference: U. Prüfert, Solving Optimal PDE Control Problems: Optimality Conditions, Algorithms and Model Reduction, PhD diss., Technische Universität Bergakademie Freiberg, 2016.
– reference: S. Mowlavi and S. Nabi, Optimal control of PDEs using physics-informed neural networks, Journal of Computational Physics, 473 (2023), Paper No. 111731, 22 pp.
– volume: 12
  start-page: 100251
  year: 2023
  ident: 25
  article-title: Suboptimal control law for a multi fractional high order linear quadratic regulator system in the presence of disturbance
  publication-title: Results in Control and Optimization
  doi: 10.1016/j.rico.2023.100251
– reference: F. Ludovici, Numerical analysis of parabolic optimal control problems with restrictions on the state and its first derivative, PhD diss., 2017.
– volume: 95
  start-page: 1308
  year: 2018
  end-page: 1325
  ident: 20
  article-title: Legendre pseudo-spectral method for optimal control problem governed by a time-fractional diffusion equation
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160.2017.1417591
– reference: R. L. Herman, Introduction to Partial Differential Equations, North Carolina, NC, USA, 2015.
– volume: 12
  start-page: 111
  year: 2020/2021
  end-page: 154
  ident: 8
  article-title: Application of Zernike polynomials in solving certain first and second order partial differential equations
  publication-title: Jaen J. Approx
– reference: P. Kumar, V. S. Erturk, S. Tyagi, J. Banas and A. Manickam, A generalized Caputo-type fractional-order neuron model under the electromagnetic field, International Journal of Dynamics and Control, (2023), 1-14.
– volume: 40
  start-page: 1
  year: 2023
  end-page: 9
  ident: 33
  article-title: A numerical approach for solving a class of two-dimensional variable-order fractional optimal control problems using Gegenbauer operational matrix
  publication-title: IMA Journal of Mathematical Control and Information
  doi: 10.1093/imamci/dnac031
– reference: E. Madenci and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS, Springer US, 2015.
– reference: T. Kaczorek, Two-dimensional Linear Systems, Lect. Notes Control Inf. Sci., 68, Springer-Verlag, Berlin, 1985.
SSID ssib053497868
ssib051265665
Score 1.8724785
Snippet In this work, a novel method for simulating the fractional two-dimensional linear-quadratic optimal control problem of fractional partial differential...
SourceID crossref
aims
SourceType Enrichment Source
Index Database
Publisher
StartPage 271
Title Simulating two-dimensional optimal control problem of fractional partial differential equations
URI http://www.aimsciences.org/article/id/64df3b35e2af3e5dae246167
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2837-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051265665
  issn: 2837-1739
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6iHryIouKbIHqSYrfpNs1RRNGDIqjgrTQvWLBd3fo6-dudSdJuEQU9eCnbEtLd-YbJZDbzfYTsp4blGrY-kTVCYkuOiXKtZJQwoSSsz2poUyc2wa-u8vt7cR109BonJ8DrOn9_F4__CjU8A7CxdfYPcHeTwgP4DKDDFWCH66-AvxlVTpIL26DexpFG-n5PvXE4hvhQOUIQfz49qMlgwmgnvsMBG7NwUvffjddOcTfm6aVX22tpa_0Bgsa3DqI8RFtabEMGluV7lIfT-vdDNXK-clEF9wyVh4R1R6tCgELinGjAPRlRF017TsP6kdErrYRFNvGHcr_GbyZYiouTapDBFHZHqB89l_ChwIB1-XHahgpIUzAR7ULRkKFSnmt87L6Vb3PAKY_6E8LaW46qppeH9BKK2yWyGHYC9NgjuExmTL1Ciil69At6NKBHA3o0oEfHlk7RowE92kePduitkruz09uT8yhoYEQlJFdJZJmCBLOMMwtJBJjBxDxLpWRZLHIFP9Vqk_BSZ0ZyqW0yLDOpMh1rTMQNhwFrZLYe12ad0FQOSm54yZH0kAmT81wyG-t0IErLBtkG2UPDFMGXmwL2h2i9Aq1XBOttkMPWbIUKLPIoZvLww-iDbvSjZ0_5dtzmb169RRamXrhNZp8nL2aHzKvX51Ez2XXu8QnKXWgm
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+two-dimensional+optimal+control+problem+of+fractional+partial+differential+equations&rft.jtitle=Advances+in+Computational+Science+and+Engineering&rft.au=Malmir%2C+Iman&rft.date=2023-09-01&rft.issn=2837-1739&rft.volume=1&rft.issue=3&rft.spage=271&rft.epage=297&rft_id=info:doi/10.3934%2Facse.2023012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-1739&client=summon