Optimistic Parallel Simulation of Tightly Coupled Agents in Continuous Time
Agent-based simulations relying on synchronous state updates using a fixed time step size are considered attractive candidates for parallel execution in order to reduce simulation running times for large and complex scenarios. However, if the underlying models are formulated with respect to continuo...
Uložené v:
| Vydané v: | 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT) s. 1 - 9 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
27.09.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Agent-based simulations relying on synchronous state updates using a fixed time step size are considered attractive candidates for parallel execution in order to reduce simulation running times for large and complex scenarios. However, if the underlying models are formulated with respect to continuous time, a time-stepped execution may only approximate the strict model semantics. To simulate continuous-time agent-based models, parallel discrete event algorithms can be applied. Traditionally those are based on logical processes exchanging time-stamped events, which clashes with the properties of models in which tightly coupled agents frequently access each other's states. To illustrate the challenges of such models and to derive a solution, we consider the domain-specific modeling language ML3, which allows modelers to succinctly express transitions and interactions of linked agents based on a continuous-time Markov chain (CTMC) semantics. We propose an optimistic synchronization scheme tailored towards simulations of fine-grained interactions among tightly coupled agents in highly dynamic topologies. By restricting the progress per round to at most one state change per agent, the synchronization scheme enables efficient direct read and write accesses among agents. To maintain concurrency given actions that depend on dynamically updated macro-level properties, we introduce a simple relaxation scheme with guaranteed error bounds. Using an extended variant of the classical susceptible-infected-recovered network model, we demonstrate that the proposed synchronization scheme accelerates simulations even under challenging model configurations. |
|---|---|
| AbstractList | Agent-based simulations relying on synchronous state updates using a fixed time step size are considered attractive candidates for parallel execution in order to reduce simulation running times for large and complex scenarios. However, if the underlying models are formulated with respect to continuous time, a time-stepped execution may only approximate the strict model semantics. To simulate continuous-time agent-based models, parallel discrete event algorithms can be applied. Traditionally those are based on logical processes exchanging time-stamped events, which clashes with the properties of models in which tightly coupled agents frequently access each other's states. To illustrate the challenges of such models and to derive a solution, we consider the domain-specific modeling language ML3, which allows modelers to succinctly express transitions and interactions of linked agents based on a continuous-time Markov chain (CTMC) semantics. We propose an optimistic synchronization scheme tailored towards simulations of fine-grained interactions among tightly coupled agents in highly dynamic topologies. By restricting the progress per round to at most one state change per agent, the synchronization scheme enables efficient direct read and write accesses among agents. To maintain concurrency given actions that depend on dynamically updated macro-level properties, we introduce a simple relaxation scheme with guaranteed error bounds. Using an extended variant of the classical susceptible-infected-recovered network model, we demonstrate that the proposed synchronization scheme accelerates simulations even under challenging model configurations. |
| Author | Uhrmacher, Adelinde Andelfinger, Philipp |
| Author_xml | – sequence: 1 givenname: Philipp surname: Andelfinger fullname: Andelfinger, Philipp email: philipp.andelfinger@uni-rostock.de organization: Institute for Visual and Analytic Computing University of Rostock,Germany – sequence: 2 givenname: Adelinde surname: Uhrmacher fullname: Uhrmacher, Adelinde email: adelinde.uhrmacher@uni-rostock.de organization: Institute for Visual and Analytic Computing University of Rostock,Germany |
| BookMark | eNotj81KAzEUhSMoqLVP4MK8wNTk5q9ZllGrWKjYui7pzE0NZDJlkln07S3Y1YHzHT449-Q69QkJeeJsxjmzzy-b6nurgGszAwZ8ZpXRXOkrMrVmzrVWUgjQ-pZMcw57Jo1g2ip2Rz7XxxK6kEto6JcbXIwY6SZ0Y3Ql9In2nm7D4bfEE6378RixpYsDppJpSOcmlZDGfsznUYcP5Ma7mHF6yQn5eXvd1u_Var38qBerygHwUjVKet0Y5rUEROnRtg0I5Fx62YIWumkdeO-tm-NeGMPhzJ1EBuClaqyYkMd_b0DE3XEInRtOu8tl8QcM6lBg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DS-RT52167.2021.9576156 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665433266 1665433264 |
| EndPage | 9 |
| ExternalDocumentID | 9576156 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: UH-66/15-1 funderid: 10.13039/501100001659 |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a221t-c54f6c70f642ee4fe9dc23e114f4d2636cda2fff9a8eb37712dc2a4e022f45c93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759795800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a221t-c54f6c70f642ee4fe9dc23e114f4d2636cda2fff9a8eb37712dc2a4e022f45c93 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9576156 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Sept.-27 |
| PublicationDateYYYYMMDD | 2021-09-27 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT) |
| PublicationTitleAbbrev | DS-RT |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib047306950 |
| Score | 2.1801624 |
| Snippet | Agent-based simulations relying on synchronous state updates using a fixed time step size are considered attractive candidates for parallel execution in order... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | agent-based simulation Approximation algorithms Concurrent computing Markov processes Memory management multi-agent simulation optimistic synchronization parallel simulation Real-time systems Semantics Topology |
| Title | Optimistic Parallel Simulation of Tightly Coupled Agents in Continuous Time |
| URI | https://ieeexplore.ieee.org/document/9576156 |
| WOSCitedRecordID | wos000759795800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHs7Vp2jRHmQ5BmcNN2G1kyXtQ2NqxrYL_vUlXJ4IXbyUlCby88PIl73sfIbeBMRZ0bJiDCqaSMGMagTPn0HPEQMcWKqLwixwO0-lUjRrkbs-FAYAq-Qy6_rN6y7eFKf1VWU-5w7HDG03SlDLZcbW-fUc4T01UHNQpXGGgeg9j9jZx0SmRDgbysFv3_iWjUkWRwdH_5j8mnR86Hh3tA80JaUDeJs-vbrMvqzLLdKTXXhJlQcfZspbjogXSiQfei0_aL8rVAiy99zSqDc1y6mtSZXnpUD_1HJAOeR88TvpPrFZGYJrzcMtMLDAxMkCHHgAEgrKGR-CwDQrLkygxVnNEVDp1YFnKkLv_WoAL2Chio6JT0sqLHM4I1ZEbLEZtQ4tCWT2XILVAG6YGw9Tac9L2hpitdsUvZrUNLv5uviSH3tY-oYLLK9Larku4JgfmY5tt1jfVin0BjlSajQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTf5uDRbm2a_shRpmOyOYersNvIkvegsLVjWwX_e5NaJ4IXbyUlIby88PIl73sfIbeuUhpkoBwDFVQpYeZIBOYYh54hujLQUBKFB9FwGE8mYlQjd1suDACUyWfQsp_lW77OVWGvytrCHI4N3tghu1Y5q2JrfXsPN74aisCtkrg8V7Qfxs5rYuJTGBkgyLxW1f-XkEoZR7qH_5vBEWn-EPLoaBtqjkkNsgbpv5jtvigLLdORXFlRlDkdp4tKkIvmSBMLvecftJMXyzloem-JVGuaZtRWpUqzwuB-alkgTfLWfUw6PafSRnAkY97GUQHHUEUuGvwAwBGEVswHg26Qaxb6odKSIaKQsYHLUeQx819yMCEbeaCEf0LqWZ7BKaHSN4MFKLWnkQstZxFEkqP2YoVerPUZaVhDTJdf5S-mlQ3O_26-Ifu95HkwHTwN-xfkwNrdplew6JLUN6sCrsieet-k69V1uXqfylud1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FACM+25th+International+Symposium+on+Distributed+Simulation+and+Real+Time+Applications+%28DS-RT%29&rft.atitle=Optimistic+Parallel+Simulation+of+Tightly+Coupled+Agents+in+Continuous+Time&rft.au=Andelfinger%2C+Philipp&rft.au=Uhrmacher%2C+Adelinde&rft.date=2021-09-27&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FDS-RT52167.2021.9576156&rft.externalDocID=9576156 |