Social-Network Analysis for Pain Medications Influential physicians may not be high-volume prescribers

According to the Institute of Medicine of the National Academies, more than 100 million Americans suffer from chronic pain related to diabetes, heart disease, and cancer combined. Adoption of pain medications and safe healthcare practices is a major global policy concern. This adoption process is hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) S. 881 - 885
Hauptverfasser: Choudhury, Abhinav, Kaushik, Shruti, Dutt, Varun
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 31.07.2017
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:1450349935, 9781450349932
ISSN:2473-991X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract According to the Institute of Medicine of the National Academies, more than 100 million Americans suffer from chronic pain related to diabetes, heart disease, and cancer combined. Adoption of pain medications and safe healthcare practices is a major global policy concern. This adoption process is highly influenced by the interpersonal network of physicians prescribing medications to treat pain. However, existing research into physician networks have been hospital-specific, applied to a smaller number of physicians, and dependent upon physicians' self-reports. In this paper, using big-data and data-mining, we overcome these limitations: By using a case of 30+ hospitals spanning across 2000+ physicians, we create a social network containing physicians' prescription data and adoption behavior of pain medications. The social network assumes that connected physicians work in the same hospital and belong to the same specialty or specialty group. Then, using the centrality measures, degree and eigenvector centrality, we analyze prescription volumes and proportion of adopters of pain medications. We also analyze gender effects. Results revealed that the most influential physicians were not the high-volume prescribers. Male physicians were more influential compared to female physicians; however, females prescribed more volume compared to males. Our results help us identify critical physicians from certain core specialties and specialty groups who may be approached by patients seeking pain relief.
AbstractList According to the Institute of Medicine of the National Academies, more than 100 million Americans suffer from chronic pain related to diabetes, heart disease, and cancer combined. Adoption of pain medications and safe healthcare practices is a major global policy concern. This adoption process is highly influenced by the interpersonal network of physicians prescribing medications to treat pain. However, existing research into physician networks have been hospital-specific, applied to a smaller number of physicians, and dependent upon physicians' self-reports. In this paper, using big-data and data-mining, we overcome these limitations: By using a case of 30+ hospitals spanning across 2000+ physicians, we create a social network containing physicians' prescription data and adoption behavior of pain medications. The social network assumes that connected physicians work in the same hospital and belong to the same specialty or specialty group. Then, using the centrality measures, degree and eigenvector centrality, we analyze prescription volumes and proportion of adopters of pain medications. We also analyze gender effects. Results revealed that the most influential physicians were not the high-volume prescribers. Male physicians were more influential compared to female physicians; however, females prescribed more volume compared to males. Our results help us identify critical physicians from certain core specialties and specialty groups who may be approached by patients seeking pain relief.
Author Kaushik, Shruti
Choudhury, Abhinav
Dutt, Varun
Author_xml – sequence: 1
  givenname: Abhinav
  surname: Choudhury
  fullname: Choudhury, Abhinav
  email: abhinav_choudhury@students.iitmandi.ac.in
  organization: School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
– sequence: 2
  givenname: Shruti
  surname: Kaushik
  fullname: Kaushik, Shruti
  email: shruti_kaushik@students.iitmandi.ac.in
  organization: School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
– sequence: 3
  givenname: Varun
  surname: Dutt
  fullname: Dutt, Varun
  email: varun@iitmandi.ac.in
  organization: School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
BookMark eNqNkD1rwzAQhtUvaJJm7tDFY4c6vZMsRxpD6BekH9AWuglZPoEaxypWIOTf1yEZOnY4XrjnvRueITttY0uMXSJMEAt5KxABuJzsElEcsWG_BVFoLeQxG_BiKnKt8evkLzhn45S-oT9E1Y8YsJv36IJt8hdab2K3zGatbbYppMzHLnuzoc2eqQ7OrkNs0wU787ZJND7kiH3e333MH_PF68PTfLbILeewzrGUpZdUuxocKKUVqCkqLkuU1inuygIlJ3RecfRSS1I0tYpqK8CXWKEYsav930BE5qcLK9ttjYZSgyp6er2n1q1MFeMyGQSzk2IOUsxBSl-d_LNqqi6QF78hKVzT
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3110025.3110113
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Sociology & Social History
EISBN 1450349935
9781450349932
EISSN 2473-991X
Editor Diesner, Jana
Ferrari, Elena
Xu, Guandong
Editor_xml – sequence: 1
  givenname: Jana
  surname: Diesner
  fullname: Diesner, Jana
– sequence: 2
  givenname: Elena
  surname: Ferrari
  fullname: Ferrari, Elena
– sequence: 3
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
EndPage 885
ExternalDocumentID 9069084
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a220t-1656f5edcd0c088980871825615ac82c64152e1cf821f595e8e7a8eda30f61b13
IEDL.DBID RIE
ISBN 1450349935
9781450349932
IngestDate Tue Nov 04 05:04:44 EST 2025
Thu Jul 10 05:53:09 EDT 2025
Thu Jul 10 05:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Social network analysis
pain medications
gender
eigenvector centrality
Language English
License 2017 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
LinkModel DirectLink
MeetingName ASONAM '17: Advances in Social Networks Analysis and Mining 2017
MergedId FETCHMERGED-LOGICAL-a220t-1656f5edcd0c088980871825615ac82c64152e1cf821f595e8e7a8eda30f61b13
PageCount 5
ParticipantIDs ieee_primary_9069084
acm_books_10_1145_3110025_3110113
acm_books_10_1145_3110025_3110113_brief
PublicationCentury 2000
PublicationDate 20170731
2017-July
PublicationDateYYYYMMDD 2017-07-31
2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 20170731
  day: 31
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002180213
ssj0001615928
Score 1.6481198
Snippet According to the Institute of Medicine of the National Academies, more than 100 million Americans suffer from chronic pain related to diabetes, heart disease,...
SourceID ieee
acm
SourceType Publisher
StartPage 881
SubjectTerms Applied computing
Applied computing -- Law, social and behavioral sciences
Applied computing -- Law, social and behavioral sciences -- Sociology
Applied computing -- Life and medical sciences
Applied computing -- Life and medical sciences -- Consumer health
Applied computing -- Life and medical sciences -- Health care information systems
Applied computing -- Life and medical sciences -- Health informatics
eigenvector centrality
gender
Human-centered computing
Human-centered computing -- Collaborative and social computing
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing design and evaluation methods
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing design and evaluation methods -- Social network analysis
Information systems
Information systems -- Information systems applications
Information systems -- Information systems applications -- Data mining
Networks
Networks -- Network types
Networks -- Network types -- Overlay and other logical network structures
Networks -- Network types -- Overlay and other logical network structures -- Online social networks
pain medications
Social network analysis
Subtitle Influential physicians may not be high-volume prescribers
Title Social-Network Analysis for Pain Medications
URI https://ieeexplore.ieee.org/document/9069084
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4sFTta3Y-mAF0Ytp8-gmG69i0UvpQaG3sNmdSA9NpU2F_nt3smmKIIinJEsIYWd257Ez3wdwq0ONXIexo5UOTYDClSM0Fa5FURog940eyZJsIppOxXwezxrwUPfCIGJZfIZDui3P8vVKbSlVNooJVleMm9CMotD2ah3yKcY0x5UrTc8-QZt5QYXm4435KCB0NJ8P6eqVdAZSLX-QqpQ2ZdL-39-cQO_QnMdmtdk5hQbmHWjv2RlYtVg7MKh7Udgds124zIKC7LrwYQecqa0CZ3tsEmZ8WDaTi5zZE5xSKx_Zq6UyKegbdS5kw5Zyx_JVwVJkBHvs2K2OUW2t2YxS41n24H3y_Pb04lScC470fbdwCIwn42gk5yqqgBKuiahMFGlmVyrhq5AMPnoqE76X8ZijwEgK1DJws9BLveAMWvkqx3NgbqwUcqE8bda8luM0UGbrNS4bcVZy7fbhxgggoWBik9j-aJ5UQkoqIfXh_s93knS9wKwPXRJR8mlBOpJKOoPfhy_g2Cf7XNbdXkKrWG_xCo7UV7HYrK9LzfoGK5TIsg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfRUtYqtrxVEL8bm0U03XsXSYi09KHgLm92J9NBU2lTov3cnm7YIgnhKsoQQdmZ3HjvzfQDXOtTIdRg5WunQBChcOUJT4VqnkwTIfaNHsiCb6AyH4v09GlXgbt0Lg4hF8Rne021xlq-nakGpslZEsLqivQXbxJxVdmttMirGOEelM03PPoGbeUGJ5-O1eSsgfDSf39PVKwgNpJr8oFUprEq39r__2YejTXseG60NzwFUMDuE2oqfgZXL9RCa624UdsNsHy6zsCDLOnzYAWdo68DZCp2EGS-WjeQ4Y_YMp9DLB9a3ZCY5fWOdDZmziVyybJqzBBkBHzt2s2NUXWu2o8T4lkfw1n16few5JeuCI33fzR2C40k5Gtm5imqghGtiKhNHmtmVSvgqJJOPnkqF76U84iiwIwVqGbhp6CVecAzVbJrhCTA3Ugq5UJ42q17LdhIos_kap41YK7l2G3BlBBBTODGPbYc0j0shxaWQGnD75ztxMhtj2oA6iSj-tDAdcSmd5u_Dl7Dbe30ZxIP-8PkU9nyy1kUV7hlU89kCz2FHfeXj-eyi0LJvzh3L-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+2017&rft.atitle=Social-Network+Analysis+for+Pain+Medications&rft.au=Choudhury%2C+Abhinav&rft.au=Kaushik%2C+Shruti&rft.au=Dutt%2C+Varun&rft.series=ACM+Conferences&rft.date=2017-07-31&rft.pub=ACM&rft.isbn=1450349935&rft.spage=881&rft.epage=885&rft_id=info:doi/10.1145%2F3110025.3110113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true