A Constructive Logic with Classical Proofs and Refutations

We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 13
Hauptverfasser: Barenbaum, Pablo, Freund, Teodoro
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.06.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions proceed by contradiction. The system, in natural deduction style, is shown to be sound and complete with respect to a Kripke semantics. We develop the system from the perspective of the propositions-as-types correspondence by deriving a term assignment system with confluent reduction. The proof of strong normalization relies on a translation to System F with Mendler-style recursion.
DOI:10.1109/LICS52264.2021.9470649