PixelSieve: Towards Efficient Activity Analysis From Compressed Video Streams

Pixel-level data redundancy in video induces additional memory and computing overhead when neural networks are employed to mine spatiotemporal patterns, e.g. activity and event labels from video streams. This work proposes PixelSieve, to enable highly efficient CNN-based activity analysis directly f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 811 - 816
Hlavní autoři: Wang, Yongchen, Wang, Ying, Li, Huawei, Li, Xiaowei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Pixel-level data redundancy in video induces additional memory and computing overhead when neural networks are employed to mine spatiotemporal patterns, e.g. activity and event labels from video streams. This work proposes PixelSieve, to enable highly efficient CNN-based activity analysis directly from video data in compressed formats. Instead of recovering original RGB frames from compressed video, PixelSieve utilizes the built-in metadata in compressed video streams to distill only the critical pixels that render relevant spatiotemporal features, and then conducts efficient CNN inference with the condensed inputs. PixelSieve removes the overhead of video decoding and significantly improves the performance of CNN-based video analysis by 4.5x on average.
AbstractList Pixel-level data redundancy in video induces additional memory and computing overhead when neural networks are employed to mine spatiotemporal patterns, e.g. activity and event labels from video streams. This work proposes PixelSieve, to enable highly efficient CNN-based activity analysis directly from video data in compressed formats. Instead of recovering original RGB frames from compressed video, PixelSieve utilizes the built-in metadata in compressed video streams to distill only the critical pixels that render relevant spatiotemporal features, and then conducts efficient CNN inference with the condensed inputs. PixelSieve removes the overhead of video decoding and significantly improves the performance of CNN-based video analysis by 4.5x on average.
Author Wang, Ying
Wang, Yongchen
Li, Xiaowei
Li, Huawei
Author_xml – sequence: 1
  givenname: Yongchen
  surname: Wang
  fullname: Wang, Yongchen
  email: wangyongchen@ict.ac.cn
  organization: SKLCA, Institute of Computing Technology,Chinese Academy of Sciences
– sequence: 2
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  email: wangying2009@ict.ac.cn
  organization: SKLCA, Institute of Computing Technology,Chinese Academy of Sciences
– sequence: 3
  givenname: Huawei
  surname: Li
  fullname: Li, Huawei
  email: lihuawei@ict.ac.cn
  organization: SKLCA, Institute of Computing Technology,Chinese Academy of Sciences
– sequence: 4
  givenname: Xiaowei
  surname: Li
  fullname: Li, Xiaowei
  email: lxw@ict.ac.cn
  organization: SKLCA, Institute of Computing Technology,Chinese Academy of Sciences
BookMark eNotj91KwzAYQCMoqLNPIEJeYDVfm1_vSt1UmCiseDvS5AsE-jOaMu3bK7ibc-4OnFtyOYwDEvIALAdg5vG5qkEzxfOCFZAboWUJ7IJkRmmQUvCyUJxdkyyl2DLJhOZ_vCHvn_EHu33EEz7RZvy2k090E0J0EYeZVm6OpzgvtBpst6SY6HYae1qP_XHClNDTr-hxpPt5QtunO3IVbJcwO3tFmu2mqV_Xu4-Xt7rarW0Bal4LFFwHFMxbF1RQMggnXYFeOzA8lEY4j1wzz7kIDFsJEhzIlhsoQNtyRe7_sxERD8cp9nZaDufn8heK6E-P
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586310
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 816
ExternalDocumentID 9586310
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 10.13039/501100012166
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a217t-5e548fe50dacf7f76f5c6c2ed8c194f395cde480d445f0eb6161c16b491218a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700136&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a217t-5e548fe50dacf7f76f5c6c2ed8c194f395cde480d445f0eb6161c16b491218a3
PageCount 6
ParticipantIDs ieee_primary_9586310
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.1648688
Snippet Pixel-level data redundancy in video induces additional memory and computing overhead when neural networks are employed to mine spatiotemporal patterns, e.g....
SourceID ieee
SourceType Publisher
StartPage 811
SubjectTerms Decoding
Design automation
Metadata
Neural networks
Redundancy
Spatiotemporal phenomena
Streaming media
Title PixelSieve: Towards Efficient Activity Analysis From Compressed Video Streams
URI https://ieeexplore.ieee.org/document/9586310
WOSCitedRecordID wos000766079700136&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotpvdPL2V2uJBS8FSeitpMoEF25W-8OebpNuK4MVbCCSBScKXycz3DUIPVhmPDMQl3O9uQokwieaZSLjJuZQzo3QUnh-_isFATiZqWEOPBy4MAMTkM2iFZozl29JswldZWzHJ88CnOhJC7Lha-7MTonsem9KKpENS1X7udEmQevFOYEZa1dhfRVQihvRP_7f6GWr-kPHw8AAz56gGiwZ6GxZf8PFewBae8Cimvq5wL8pB-Elwx-yKQuC95gjuL8s5Dpc_ioVbPC4slDjEpPV81USjfm_UfUmqygiJ9i7EOmHgHQ0HLLXaOOEEd8xwk4GVhijqcsWMBSpTSylzKcy4f9cZwmdUEQ_pOr9A9UW5gEuEM-7xO09deFlQyZ32oCYoo7mxmmlrrlAjWGL6udO-mFZGuP67-wadBGPHdA92i-rr5Qbu0LHZrovV8j5u2DfCN5Zl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1FBT2ptOK3OXh0281ukt14K7WlYlsKLqW3kiYTWLBd6Rf-fJN0WxG8eAuBJDBJeJnMvDcIPWqhLDIQE3C7uwEliQokj5KAq5in6VQJ6YXnR71kMEjHYzGsoKc9FwYAfPIZ1F3Tx_J1odbuq6whWMpjx6c6ZJRGZMvW2p0eF9-z6BSWNB0SisZLs0Wc2It1AyNSL0f_KqPiUaRz-r_1z1Dth46Hh3ugOUcVmFdRf5h_wcd7Dht4xplPfl3itheEsJPgptqWhcA71RHcWRQz7K6_lwvXeJRrKLCLSsvZsoayTjtrdYOyNkIgrROxChhYV8MAC7VUJjEJN0xxFYFOFRHUxIIpDTQNNaXMhDDl9mWnCJ9SQSyoy_gCHcyLOVwiHHGL4HFo3NuCptxIC2sJZTRWWjKp1RWqOktMPrfqF5PSCNd_dz-g427W7016r4O3G3TiDO-TP9gtOlgt1nCHjtRmlS8X937zvgHF7Jms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=PixelSieve%3A+Towards+Efficient+Activity+Analysis+From+Compressed+Video+Streams&rft.au=Wang%2C+Yongchen&rft.au=Wang%2C+Ying&rft.au=Li%2C+Huawei&rft.au=Li%2C+Xiaowei&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=811&rft.epage=816&rft_id=info:doi/10.1109%2FDAC18074.2021.9586310&rft.externalDocID=9586310