MyML: User-Driven Machine Learning

Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the privacy of user data. In contrast, the type of data processed at edge devices is user specific and limited to few inference classes. In this work,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 145 - 150
Hlavní autoři: Goyal, Vidushi, Bertacco, Valeria, Das, Reetuparna
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the privacy of user data. In contrast, the type of data processed at edge devices is user specific and limited to few inference classes. In this work, we explore the opportunity of building smaller, user-specific machine learning models, rather than utilizing a generic, compute-intensive machine learning model that caters to a diverse range of users. We first present a hardware-friendly, light-weight pruning technique to create user-specific models directly on mobile platforms, while simultaneously executing inferences. The proposed technique leverages compute sharing between pruning and inference, customizes the retraining backward-pass and chooses a pruning granularity for efficient processing on edge. We then propose architectural support to prune user-specific models on a systolic edge ML inference accelerator. We demonstrate that user-specific models provide a speedup of 2.3\times over the generic model on mobile CPUs.
AbstractList Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the privacy of user data. In contrast, the type of data processed at edge devices is user specific and limited to few inference classes. In this work, we explore the opportunity of building smaller, user-specific machine learning models, rather than utilizing a generic, compute-intensive machine learning model that caters to a diverse range of users. We first present a hardware-friendly, light-weight pruning technique to create user-specific models directly on mobile platforms, while simultaneously executing inferences. The proposed technique leverages compute sharing between pruning and inference, customizes the retraining backward-pass and chooses a pruning granularity for efficient processing on edge. We then propose architectural support to prune user-specific models on a systolic edge ML inference accelerator. We demonstrate that user-specific models provide a speedup of 2.3\times over the generic model on mobile CPUs.
Author Das, Reetuparna
Bertacco, Valeria
Goyal, Vidushi
Author_xml – sequence: 1
  givenname: Vidushi
  surname: Goyal
  fullname: Goyal, Vidushi
  email: vidushi@umich.edu
  organization: University of Michigan,Ann Arbor,USA
– sequence: 2
  givenname: Valeria
  surname: Bertacco
  fullname: Bertacco, Valeria
  email: valeria@umich.edu
  organization: University of Michigan,Ann Arbor,USA
– sequence: 3
  givenname: Reetuparna
  surname: Das
  fullname: Das, Reetuparna
  email: reetudas@umich.edu
  organization: University of Michigan,Ann Arbor,USA
BookMark eNotj8tKAzEUQCMoqHW-QITB_Uxz87hJ3JWpj8IMbuy6JOmNBjRKRoT-vYLdnLM7cC7ZafksxNgN8B6Au-V6NYDlRvWCC-idtigFP2GNMxYQtZLCKH7OmnnOgSPXVv3xgt1Oh2m8a7cz1W5d8w-VdvLxLRdqR_K15PJ6xc6Sf5-pOXrBtg_3L8NTNz4_bobV2HkB5rsDp7xNaIyLbr-nGKUIMpJNGnxA8gITBCCtrIaYopeghHUhoiXjHCq5YNf_3UxEu6-aP3w97I4n8hcNVj8w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 150
ExternalDocumentID 9586320
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a217t-194a8f6779c9ddecc32b3ce8f51ab6ea26f1b1e54851cfca314289bc68e799643
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a217t-194a8f6779c9ddecc32b3ce8f51ab6ea26f1b1e54851cfca314289bc68e799643
PageCount 6
ParticipantIDs ieee_primary_9586320
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.1873658
Snippet Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the...
SourceID ieee
SourceType Publisher
StartPage 145
SubjectTerms Buildings
Collaboration
Computational modeling
Data privacy
Design automation
Privacy
Transfer learning
Title MyML: User-Driven Machine Learning
URI https://ieeexplore.ieee.org/document/9586320
WOSCitedRecordID wos000766079700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXfLOLRtM3uJtl4k9bioVt6sNJbyWMiXlppt4L_3iRdK4IXbyEQwkyGGb7MzDcAt05rTpWUhHGrSW6oJYW1hjAmrPBgzPJYIPsyEuNxMZvJSQPudr0wiBiLz7ATljGXb5dmE77KupIVPEs9QN8TQmx7tb5tJ2T3fGzq1U06tCe7g4c-DVQvHgSmtFOf_TVEJcaQ4eH_bj-C9k8zXjLZhZljaOCiBTflZzm6T6begMhgFTxWUsaySExqxtTXNkyHj8_9J1KPOyDK44KKUJmrwnEhpJHe6RiTpTozWDhGleaoUu6opughBqPGGZUFsjSpDS9QyECrdQLNxXKBp5BkHgak0mXoVZ4H_pncxZQk1VIrodQZtIJ88_cto8W8Fu387-0LOAgqjEUc7BKa1WqDV7BvPqq39eo6PsMXYFuGwg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfSk0opvF_Fo2mZ3k2y8SWupuFt6aKW3kqf0spXaCv57k3StCF68hUAIMxlm-DIz3wDcWikpFpwjQrVEqcIaZVorRAjTzIExTUOB7EvOhsNsOuWjGtxte2GMMaH4zLT8MuTy9UKt_VdZm5OMJrED6DskTWO86db6th6f33PRqVO16eAOb_ceutiTvTgYGONWdfrXGJUQRfoH_7v_EJo_7XjRaBtojqBmygbcFJ9Ffh9NnAmh3tL7rKgIhZEmqjhTX5sw6T-OuwNUDTxAwiGDFcI8FZmljHHFndtRKollokxmCRaSGhFTiyU2DmQQrKwSiadL41LRzDDuibWOoV4uSnMCUeKAQMxtYpzSU89Ak9qQlMSSS8GEOIWGl2_2tuG0mFWinf29fQ17g3GRz_Kn4fM57Ht1hpIOcgH11XJtLmFXfazm78ur8CRfmr2KCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=MyML%3A+User-Driven+Machine+Learning&rft.au=Goyal%2C+Vidushi&rft.au=Bertacco%2C+Valeria&rft.au=Das%2C+Reetuparna&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=145&rft.epage=150&rft_id=info:doi/10.1109%2FDAC18074.2021.9586320&rft.externalDocID=9586320